
The Economic Costs of NIMBYism: Evidence from

Renewable Energy Projects

Stephen Jarvis*

Abstract

Large infrastructure projects have important social benefits, but can also prompt
strong local opposition. I estimate the economic costs of NIMBY (Not In My
Backyard) attitudes and local planning restrictions by studying renewable energy
projects. Using data on thousands of permitting applications, I show that wind and
solar projects can have highly heterogeneous impacts depending on their character-
istics and location. In some cases this includes significant external local costs, and I
conduct a hedonic analysis to quantify the impact on nearby property values. I then
show that planning officials are particularly sensitive to these local costs, especially
when wealthy residents are affected. This often comes at the expense of considering
the wider social benefits of these projects. These biases in the permitting process
create inefficiencies that increased costs and led to substantial underinvestment in
renewable energy.

JEL Codes: Q42, R11, Q58, R52

*Stephen Jarvis: Department of Geography and Environment, London School of Economics and
Political Science, Houghton Street, London, WC2A 2AE, UK. Email: S.Jarvis@lse.ac.uk. I would like
to thank Severin Borenstein, Meredith Fowlie and David Anthoff for their fantastic comments throughout
this project. I also wish to acknowledge colleagues at the Energy Institute at Haas and the Energy &
Resources Group, as well as seminar participants at UC Berkeley, USAEE/IAEE, EAERE, AERE, MIT
CEEPR, University of Mannheim, ZEW, UEA CCP and University of Glasgow. Yeeun Moon, Danielle
Schiro, Fiona Stewart, Ana Fung and Keanna Laforga provided excellent research assistance collecting
planning application information for this project. Lastly I would like to thank the Fisher Center for
Real Estate & Urban Economics, the Library at the University of California, Berkeley, and the German
Research Foundation (DFG) through CRC TR 224 (Project B7) for generously providing funding to
support the completion of this research.

1



1 Introduction

Large infrastructure projects can create widespread economic benefits and are often crit-

ical to tackling major national or global problems. In most countries new buildings and

infrastructure require some form of local permitting. Getting planning approval can often

be challenging, especially where there are concentrated local impacts that prompt strong

pushback from affected residents.

This kind of local opposition is sometimes pejoratively labeled NIMBY (Not In My

Backyard) behavior. It is most commonly associated with projects that combine pub-

lic goods with private bads and spans issues as diverse as highways to landfills (Frey,

Oberholzer-Gee and Eichenberger, 1996; Feinerman, Finkelshtain and Kan, 2004). Avail-

able evidence on housing construction suggests that the economic costs of distortions

created by local planning restrictions can be substantial (Glaeser and Gyourko, 2018;

Hsieh and Moretti, 2019).

In this paper I estimate the economic costs of NIMBYism and local planning re-

strictions by examining the case of renewable energy projects. Renewable energy is of

particular interest because many countries have committed to policies that require a

dramatic rollout of new energy infrastructure. Based on existing policies and pledges,

global electricity production from wind and solar is expected to increase four-fold by

2030, and twelve-fold by 2050 (IEA, 2022). Currently wind and solar account for 10%

of global electricity output, but this could rise to 30% by 2030 and 60% by 2050 (IEA,

2022). NIMBYism and permitting challenges have increasingly been raised as significant

barriers to this rollout (Carley et al., 2020).

My analysis focuses on the United Kingdom, where I am able to draw on detailed

planning data for all proposed projects, including those that were denied planning per-

mission and did not go ahead. The data covers roughly four thousand large wind and

solar projects proposed in the UK over the past three decades. I start by describing some

of the key trends observed in the data. I find that wind projects have a tougher time

getting approved than solar projects. I find evidence that local county decisonmakers

are more hostile to these projects than national ones. I also provide evidence on some of

the key drivers of local opposition, which appears to be heavily motivated by the visual

and noise disamenitites that residents have historically associated with these projects,

particularly wind power.

It is possible that observed planning outcomes, and the low approval rates for wind

power, are simply the efficient result of the planning process accounting for local external

costs. Alternatively, local permitting decisions may be placing outsize weight on local

factors, while dismissing the wider social merits for expanding renewable energy. To test

2



this I move to more explicitly evaluating the effectiveness of the planning process.

First I estimate the full range of costs and benefits for each project. Here I incorpo-

rate a wide range of information to estimate the electricity production for each project;

the market value of that electricity production and the external value of any emissions

or pollution abated. This includes accounting for hourly variability in both renewable

production and the marginal value of that production. I also bring together numerous

sources to estimate the costs of constructing and operating each project.

A critical further addition I make is to estimate the local external costs on nearby

residents and businesses. To fill this gap I focus on the capitalization into local property

values. A number of studies have used hedonic methods to quantify the visual and

noise disamenities from wind farms, generally finding negative effects on property values

(Parsons and Heintzelman, 2022). There are also important margins of heterogeneity,

such as visibility or the size and number of turbines installed (Gibbons, 2015; Sunak and

Madlener, 2016; Dröes and Koster, 2016; Jensen et al., 2018; Dröes and Koster, 2020).

The evidence for solar projects is less extensive, but mostly points to smaller effects

limited to distances within 1km (Dröes and Koster, 2020; Gaur and Lang, 2020).

Here I provide new estimates of these capitalization effects, incorporating new methods

that tackle challenges with the staggered deployment of these projects (Callaway and

Sant’Anna, 2019). I find wind projects can reduce property values by 8-10% at distances

of up to 4km and where the project is directly visible. I find no significant effects for

solar projects. I use these estimates to calculate the change in nearby property values for

each project in my sample. In doing so I account for both the proximity and line-of-sight

visibility between each property and project. Changes to property values are unlikely

to capture all the local impacts (e.g. employment or wildlife). Nevertheless, there are

good reasons to think these capture a substantial portion of the impacts of interest in

this setting, particularly when thinking about sources of local opposition.

Taken together my estimates of project-level costs and benefits reveal significant het-

erogeneity and important tradeoffs. For instance, productivity is mainly a function of

location - namely how windy or sunny a site is. Productive locations near population cen-

ters create higher local external costs, but similar locations in remote areas incur higher

operational costs of transmitting power over long distances. Larger projects have lower

capital costs due to economies-of-scale, but also impose higher local external costs.

Using my complete set of estimates for project-level costs and benefits, I proceed

to examine whether the planning and permitting process actually does a good job of

accounting for these different tradeoffs. Using a fixed effects regression analysis I find

evidence that permitting decisions are indeed particularly responsive to local factors. This

is especially true in wealthier areas where a £10 million increase in local property value
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costs leads to a 2.4% reduction in the likelihood of approval. This effect is significantly

different from the impact of wider social costs and benefits (e.g. electricity production

benefits or capital and operating costs) on the likelihood of approval. Local opposition

likely plays a role here. I find projects with higher local property value costs receive more

public comments, and that more objecting public comments are associated with a lower

likelihood of approval. These findings are also consistent with the localized nature of the

process, with decisions for most projects being made by local planning authorities.

Refusing a proposed project to avoid adverse local impacts may benefit local residents.

But what appears optimal for a given local area can in aggregate create harmful outcomes

for society as a whole. To quantify the scale of the problem and the scope for Pareto-

improving trades, I calculate the potential gains from approving and constructing an

alternative set of projects drawn from all of those that were proposed. I look at the

gains from approving all projects with a positive social net present value, and a more

constrained analysis that reproduces the observed deployment of renewable energy at

least cost.

I find that inefficiencies in planning and permitting decisions have contributed to a

significant misallocation of investment. The wind and solar projects actually built as of

2022 have lifetime capital and operating costs of £142 billion. My analysis indicates that

the same deployment of renewable energy could have been achieved with costs savings

of 18% if reallocating within local authorities and across years, and 26% if reallocating

across local authorities within years.

Furthermore, the existing rate of deployment has likely been much too slow. Approv-

ing all socially beneficial projects would entail increasing the amount of wind and solar

power by a further 55%, pointing to significant underinvestment. The majority of socially

beneficial projects that failed to be built were refused planning permission, indicating that

much of the blame can be attributed to the planning and permitting process.

Policymakers have tried a range of policies that could address the misaligned incentives

identified here. I examine the feasibility of developers making direct payments to nearby

residents. I show that a simple transfer scheme can be designed that compensates the large

majority of affected households, often at a manageable cost to developers. Understanding

the effectiveness of these transfer payments, and possible changes that could improve the

permitting process, remains a key area for further research.

Clean energy investment is expected to reach $2 trillion per year by 2030, mostly to

build new wind and solar power (IEA, 2022). The findings in this paper suggest that

this expansion could be achieved at much lower cost and with less political opposition

if changes are made to the planning and development process. The local opposition to

renewable energy studied here also shares many similarities with challenges faced by other
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large infrastructure projects in areas like transportation, water and waste. There is every

reason to think that similar planning inefficiencies may be present in those sectors too.

Prior Literature and Contributions

This work contributes to several important literatures. First there is a range of re-

search on the economic impacts of place-based policies. In some cases these policies can

be aimed at encouraging desirable local development, often with mixed results (Green-

stone and Moretti, 2003; Glaeser and Gottlieb, 2008; Sadun, 2015; Chen et al., 2019). In

other cases the goal is to restrict local development viewed as disruptive. Much of this

work has been limited to studying housing development, where local planning restric-

tions have been shown to cause chronic underinvestment in important locations, creating

a substantial drag on the economy (Glaeser and Gyourko, 2018; Hsieh and Moretti, 2019;

Anagol, Ferreira and Rexer, 2021).

The findings in this paper provide new evidence of significant costs in the context of

large-scale infrastructure deployment. Research of this kind for infrastructure projects is

particularly challenging due to small sample sizes and the idiosyncratic nature of large

projects. This paper leverages the fact that renewable energy projects are numerous and

fairly homoegenous, making consistent valuation more tractable. The planning database

used here also contains both completed and failed projects which is key to providing new

insights into the effectiveness of the permitting process.

Second there is a rich literature focused on the location of undesirable industrial facil-

ities. Studies in this area have linked siting decisions to both the size of the local external

costs imposed and to the political power of nearby residents (Mitchell and Carson, 1986;

Hamilton, 1993; Currie et al., 2015). Linkages are often made to concerns about NIMBY-

ism, and possible ways to mitigate this kind of local opposition (Frey, Oberholzer-Gee and

Eichenberger, 1996; Feinerman, Finkelshtain and Kan, 2004). This paper explores many

of the same issues in a new context, and is able to conduct a more detailed assessment

of the feasibility of a common policy solution: transfer payments to affected residents.

Early studies on landfills and harzardous waste sites also formed the basis for the

broader literature on environmental justice (Banzhaf, Ma and Timmins, 2019). The

transition to renewable energy has often been held up as a panacea to many unequal

distributions of environmental burdens. But wind and solar projects create their own

winners and losers, and political processes will be key to determining whether they per-

petuate past inequities (Carley and Konisky, 2020). My findings reinforce this point.

Lastly, there is the extensive literature on climate change and the deployment of re-

newable energy. Much of this has considered the optimal policy mix to solve emissions and

pollution market failures, with the accelerated uptake of renewable energy a consistent

focus (Callaway, Fowlie and McCormick, 2018; Fell, Kaffine and Novan, 2021; Holland,
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Mansur and Yates, 2022; Borenstein and Kellogg, 2022).

Beyond getting price incentives right, a key challenge is overcoming regulatory and

political barriers (Carley et al., 2020). A wealth of survey-based studies have examined

community acceptance for renewable energy projects, with several questioning the validity

of the NIMBY characterisation (Wolsink, 2000; Rand and Hoen, 2017; Hoen et al., 2019).

But a growing body of revealed preference evidence does suggest that wind farms can

prompt political and regulatory pushback at the local level. This can come through

the emergence of new restrictive zoning regulations (Winikoff, 2019) or efforts to punish

“green” politicians at the ballot box (Stokes, 2016; Germeshausen, Heim and Wagner,

2021).

This paper builds on prior revealed preference studies by studying the observed deci-

sions made by local planning officials. The findings provide new evidence quantifying the

scale of the inefficiencies being created, and the potential benefits from policy changes

that can improve infrastructure permitting more broadly.

2 Data and Context

2.1 Renewable Energy Policy in the UK

The first commercial wind farms in the UK were constructed in the early 1990s. Capacity

has since grown to 26GW as of 2021. These wind farms produce 33% of Great Britain’s

electricity, and this is expected to rise to 61-69% by 2030 (NGET, 2022). Projects are

mostly located in the windier and more remote regions of the north and west of the

country. Many projects have also been sited in coastal areas with roughly half of the

total capacity now located offshore.

The emergence of solar power in the UK has been more recent, starting in the 2010s.

By 2021 total solar capacity stood at 13GW. Solar power currently produces 5% of Great

Britain’s electricity, and this is expected to rise modestly to 5-10% by 2030 (NGET, 2022).

Most of this capacity has been located in the flatter agricultural areas in the south of the

country where solar potential is highest. Unlike wind power, small-scale residential and

commercial solar installations are widespread making up roughly a third of total solar

capacity.

Despite a relatively broad political consensus in the UK on the importance of tackling

climate change, the expansion of renewable energy has still been uneven and contentious.

Both wind and solar projects have historically been dependent on carbon taxes and

production subsidies, both of which are set at the national level. In the 1990s and

2000s onshore wind was the most widespread technology, but from 2009 a range of more
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Figure 1: Renewable Energy Projects in the UK

Notes: These figures show the location of projects and the timing of when they were submitted for
planning permission. Project sizes are determined by their capacity (in MW). Projects are classified
by their development status. “Pending” are projects that have submitted a planning application but
have yet to receive a final decision. “Approved” are projects that have been approved and are either
awaiting construction, under construction, operational or have been subsequently decommissioned.
“Refused” are projects that were refused planning permission or were otherwise withdrawn or halted.
The administrative boundaries depicted are the local planning authorities responsible for processing
planning applications.
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generous subsidies spurred the expansion of solar power and offshore wind.

In 2015 several reforms were introducted that led to a decline in new investment

for both solar power and onshore wind, including freezing the UK carbon tax, cutting

renewable subsidies and requiring greater consensus from local residents for projects to

be approved. Some of these changes were driven in part by the vocal opposition of rural

voters to onshore wind turbines, with then-prime minister David Cameron vowing to

“rid” the countryside of these “unsightly” structures. Notably offshore wind was not

subjected to the same withdrawl of policy support. In recent years some of these subsidy

cutbacks have been reversed, although the issue remains politically contentious.

2.2 Permitting Process for Renewable Energy

In most countries the planning and permitting process is a key determinant of the deploy-

ment of any large-scale infrastructure, including renewable energy projects. Like many

jurisdictions, the UK decides the overwhelming majority of planning applications at the

local level through local planning authorities. Local authorities are the primary unit of

local government in the UK and are broadly analogous to counties or municipalities in

other countries. Project developers submit a planning application to the relevant local

authority. The proposal is reviewed in line with national and local planning guidelines.

A public consultation period is required where affected residents and stakeholders have

the opportunity to provide comments. The local authority then decides to either approve

or refuse the planning application.

In making their determinations, local planning officials must weigh a range of com-

peting factors. In the UK they have a legal duty under the 2008 Planning Act to mitigate

and adapt to climate change. However, the national guidelines are relatively open-ended,

stating that “all communities have a responsibility to help increase the use and supply of

green energy, but this does not mean that the need for renewable energy automatically

overrides environmental protections and the planning concerns of local communities”.

Important local concerns often center on changes to the character of the surrounding

landscape, particularly for culturally and environmentally important sites (e.g., castles,

monuments, national parks etc). For wind projects a noise assessment must be conducted,

and there are several safety standards to ensure the turbines do not interfere with flight

paths or radar installations.

A common approach in many countries is to set out certain zoning criteria that restrict

development (e.g., setbacks stating how far projects must be from nearby properties or

quotas for the number of projects in a certain area). The planning process in the UK is

generally less prescriptive, but officials do still have a lot of scope to deem certain siting

decisions to be harmful. Planning authorities may also seek amendments to planning

8



applications, or approve them with conditions aimed at mitigating concerns.

There are two main exceptions to local control of the planning process in the UK

setting. The first arises when projects are sufficiently large that they are deemed to

have substantial national importance (e.g., motorways, airports, rail networks, ports

etc.). In the case of renewable energy, projects with a capacity greater than 50MW

have historically been deemed to be of national significance. In these situations the

decision is made by the national Planning Inspectorate, although local views are still

consulted. The second exception arises when a developer appeals the decision of a local

planning authority. Once an appeal is lodged the national Planning Inspectorate conducts

a review and decides to either uphold or overturn the initial decision. In both cases

the split between local and national control provides an opportunity to examine the

decisionmaking of officials at different levels of government.

2.3 Renewable Energy Planning Database

The primary dataset used in this paper is a UK government database on the planning

applications for renewable energy projects. The Renewable Energy Planning Database

includes all projects with a capacity of 1MW or greater that have been proposed since

1990 (BEIS, 2022). Small-scale residential or commercial systems (e.g. rooftop solar)

are excluded. I limit my analysis to wind and solar projects as these are the two largest

sources of renewable energy, and are expected to provide the vast majority of future

capacity additions both in the UK and globally (NGET, 2022; IEA, 2022).

Figure 1 shows where projects have been located and when they were submitted for

planning approval. Table 1 provides additional summary statistics on planning outcomes

for the projects in the database.

The projects in the planning database comprise the overwhelming majority of wind

and solar capacity in the UK. There is a roughly even split across the two technology

types, although wind projects are larger and so account for most of the total capacity.

Despite this, it is noticeable from Table 1 just how much tougher the planning process

is for wind projects. Receiving a planning decision takes three to four times longer for

wind projects. The approval rate is much lower as well, with 41% of wind projects being

approved compared to 73% for solar projects. Accounting for appeals causes this to rise

to 51% of wind projects and 78% for solar projects.

To further highlight some of the factors that correlate with projects successfully re-

ceiving planning permission, Table 2 shows the results of regressing a binary indicator

for whether a project was approved on a range of project characteristics.

As expected, there is a marked drop in wind project approvals post-2015, but not
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Table 1: Summary Statistics on Project Planning Outcomes

Solar Wind

Number of Projects 2025 1885
Total Capacity (MW) 20756 73133
Average Capacity (MW) 10.2 38.8
Length of Planning Process to Initial Decision (days) 156 546
Length of Planning Process to Final Decision (days) 192 644
Initial Decision Approval Rate 0.73 0.41
Share of Projects subject to National Authority Decision 0.01 0.14
National Authority Initial Decision Approval Rate 0.75 0.67
Local Authority Initial Decision Approval Rate 0.73 0.37
Share of Projects Appealed 0.11 0.23
Appeal Success Rate 0.46 0.48
Final Decision Approval Rate 0.78 0.51

Notes: This table contains summary statistics for all wind and solar energy projects in the UK with
a capacity of 1MW or greater that were submitted for planning approval since 1990. This excludes
projects that are under review at the time of writing. Projects can be subject to approval by either
a local or national planning authority. The planning authority makes an initial decision to either
approve or refuse the project. Projects may then be appealed in which case the final decision may
differ from the initial decision.

for solar. This corresponds to changes made to the planning process that gave local

residents more power to block onshore wind projects. In general, approvals appear less

likely for larger projects, projects sited in conservative areas, projects near national parks

or areas with high property values, and projects proposed in areas where large amounts

of capacity have previously been constructed. Conversely, offshore wind projects, those

proposed by large developers and those decided at the national level are more likely to

be approved.1

To provide further information on some of the key reasons why projects are refused

I collected the decision letters for 120 wind and solar projects. The most cited reason

for refusal was visual impact, which was mentioned in 60% of solar refusals and 75% of

wind refusals. By comparison, noise concerns do not feature particularly heavily. This is

unsurprising for solar projects. For wind projects though, noise is a common complaint

and yet it is only mentioned in 25% of wind refusals. It may simply be that, while

important, noise impacts are small relative to visual disamenities. Another explanation

is that there are already clear objective regulations for noise limits, and so developers

are likely to ensure these are met for all proposed projects. Visual impacts, on the other

hand, are harder to explicitly include in planning procedures and so provide far greater

latitude for subjective interpretation by planning officials.

1The largest fifty developers in the sample comprise 90% of offshore wind capacity, 55% of onshore
wind capacity and 41% of solar capacity.

10



Table 2: Planning Process Regressions for Project Characteristics

Wind Solar

Model: (1) (2) (3) (4)

Variables
Post-2015 -0.1152∗∗∗ 0.0599∗∗∗

(0.0357) (0.0200)
log(Project Capacity (MW)) -0.0481∗∗∗ -0.0508∗∗∗ -0.0285∗∗ -0.0341∗∗

(0.0118) (0.0136) (0.0110) (0.0136)
log(Cumulative Capacity (MW)) -0.0069 -0.0427∗ 0.0165∗ -0.0411

(0.0084) (0.0223) (0.0092) (0.0267)
Large Developer 0.1276∗∗∗ 0.1493∗∗∗ 0.0255 0.0471∗∗

(0.0260) (0.0273) (0.0202) (0.0216)
Distance to National Park (km) 0.0015∗∗∗ 0.0016∗∗ 0.0004 0.0012

(0.0004) (0.0007) (0.0004) (0.0007)
National 0.1467∗∗∗ 0.1383∗∗∗ -0.0191 -0.0213

(0.0361) (0.0361) (0.1130) (0.1310)
Conservative -0.1113∗∗∗ -0.0655 -0.0292 -0.0731

(0.0426) (0.0702) (0.0251) (0.0621)
Avg. Property Value (thou. £) -0.0005 -0.0001 -0.0004∗∗ -0.0009∗∗∗

(0.0003) (0.0005) (0.0002) (0.0003)
On/Offshore 0.3167∗∗∗ 0.3355∗∗∗

(0.0613) (0.0865)

Fixed-effects
Year Yes Yes
Local Authority Yes Yes

Fit statistics
Observations 1,879 1,879 1,988 1,988
R2 0.06889 0.24762 0.01651 0.25508
Within R2 0.04340 0.01690
Technology Wind Wind Solar Solar

Clustered (Local Authority) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table shows the impact on approval probability of various project characteristics.
“Post-2015” is a dummy for whether a project was due to come online after 2015. “Capacity” refers
to the capacity in MW of a project. “Cumulative Capacity” refers to the capacity in MW of all
previously approved projects in a local authority. “Large Developer” refers to whether a project was
proposed by one of the fifty largest developers in the sample. “National” coefficients capture whether
a project’s planning application was decided at the national level. “Conservative” captures whether
a local authority is politically conservative. “Avg. Property Value” captures the average residential
property value within 6km of a project. “On/Offshore” is a dummy for whether a project is located
Offshore and is only relevant for wind projects.
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The planning outcome data described here makes clear that a big challenge for the

deployment of renewable energy is getting permitting approval. A key determinant of

success is likely to be the extent of opposition from local residents and firms. In many

ways this makes renewable energy projects similar to most other large-scale infrastructure

projects, and so the findings here may be instructive for other sectors.

However, the particular importance of national and global factors (e.g., climate change)

makes wind and solar projects an especially challenging case when planning processes are

so dominated by local decisionmakers. Unlike more traditional local infrastructure like

transport or housing, most of the benefits of wind and solar projects are spread diffusely

throughout wider society while certain key costs remain concentrated locally. Quantify-

ing the economic impacts arising from this misalignment between local and wider social

incentives is the primary aim of this paper.

3 Empirical Strategy

To examine the potential economic impact of NIMBYism and local planning restrictions I

conduct four pieces of analysis. First, I quantify the key costs and benefits of each project.

This includes conducting a hedonic analysis to estimate the local external costs of these

project as reflected in changes to nearby property values. The goal is to understand how

large the local impacts are relative to the other wider social impacts that motivate the

deployment of renewable energy. Second, I conduct a regression analysis to understand

how responsive planning officials are to economic impacts that are local or non-local. This

builds on the earlier exploratory regressions on project characteristics. Third, I estimate

the costs of inefficient planning decisions in the form of misallocated investment. I do

this by looking at the gains from reallocating across the range of proposed projects to see

if beneficial ones are systematically denied planning permission. Lastly, I examine the

feasibility of a key policy solution: making transfer payments to affected local residents.

3.1 Estimating project-level costs and benefits

3.1.1 Benefits of Installation and Electricity Production

Estimating Electricity Production

Electricity production for wind and solar projects is almost entirely determined by

three factors: the available wind or solar resource, the capacity of the project and the

characteristics of the turbines or panels installed. A key statistic for summarizing the

output from any renewable energy project is the capacity factor: the average amount of
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power the project produces normalized by the maximum power output capacity. In the

UK this is generally around 35% for wind projects and 10% for solar projects.

To estimate the capacity factors for wind and solar projects I use estimates from

Renewables Ninja (Pfenninger and Staffell, 2016; Staffell and Pfenninger, 2016), which I

complement with data from the Wind and Solar Atlases produced by the World Bank

(World Bank, 2022a,b). The analysis produces a unique capacity factor profile for each

project at the month-of-year by hour-of-day level. This captures the key sources of

seasonal and within-day variation in wind and solar output. In each case the capacity

factor is project specific in that it is based on the wind or solar resource at a project’s

precise location and the nature of the technology installed (i.e. the turbine size and

characteristics for wind projects). I also make adjustments to the wind capacity factors

to ensure they better match improvements in observed performance over time (IRENA,

2022; Smith, 2023). Full details on the estimation of the hourly project specific capacity

factors can be found in the appendix. Total electricity production in MWh is calculated

as the project specific capacity factor multipled by the capacity of a project multiplied

by the total number of hours in its 25 year lifetime.

Market Value of Electricity

To value the electricity produced by each project I primarily rely on data from the

UK government’s guidance on cost benefit analysis and the valuation of climate change

policies (BEIS, 2021). I measure the market value of the electricity produced by each

project using the wholesale price of electricity. To capture long-term annual trends I

use pre-2022 data on observed traded wholesale market prices and post-2022 data on

projections out to 2050 that were made by the UK government.2

There is also significant spatial and temporal variation in the private value of electric-

ity production, even on an hour-to-hour basis. To capture hourly variation in the private

value of electricity production I supplement the annual data with observed hourly whole-

sale electricity prices from 2004 to 2022. I then train a machine learning model using

this historical data that I use to make plausible predictions of hourly wholesale electricity

prices across my entire sample period from 1990 to 2050. To capture spatial variation in

rely on a recent study of locational marginal pricing to adjust prices to reflect congestion

rents, most notably those associated with the transfer of power from the north (where

there is an excess of supply) to the south (where demand centers are located) (Ofgem,

2022). Full details on this are provided in the appendix.

Wind and solar projects do also receive production subsidies in addition to any whole-

sale market revenues. I do not include subsidy revenues in my estimates of the market

2These projections are based on modeling of the future electricity grid that includes forecasting fuel
prices, demand and investment in new capacity, and then running a dispatch model to solve for clearing
market prices.
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value of the electricity produced because from the perspective of a social planner they

are simply transfers.

External Value of Emissions and Local Pollution Abated

The electricity produced by renewable projects has added non-market benefits when it

displaces other forms of environmentally harmful power production. In particular, where

increased production of renewable electricity displaces coal or gas-fired power plants it

will reduce both carbon emissions and local pollutant emissions.

To calculate the emissions intensity of the electricity being displaced by new wind and

solar production, I start with historical data on annual total electricity generation and

annual power plant emissions by source type (i.e. coal, gas, oil etc.). I use this to calculate

annual average emissions factors for each source type for CO2, SO2, PM2.5, PM10 and

NOX. For future values I project these emissions factors for each source type forward to

2050. I then weight these source level emissions factors by the relative generation shares

of the different flexible sources of electricity supply that are assumed to be displaced by

new wind or solar output (i.e. coal, oil, gas, other thermal, storage and interconnectors).

This gives annual estimates of marginal emissions factors.

As with wholesale electricity prices, there is also significant within-year variation in the

emissions intensity of electricity production, and this can have important implications for

the value of additional wind and solar output (Borenstein and Bushnell, 2018; Callaway,

Fowlie and McCormick, 2018). To capture hourly variation in the external value of

electricity production I supplement the annual data with hourly observed data on total

demand and electricity production by source type from 2009 to 2022. I then estimate a

simple econometric model using this historical data in order to make plausible predictions

of hourly fluctuations in total demand and electricity generation by source type across my

entire sample period from 1990 to 2050. I use the combination of observed and predicted

values and the annual average emissions factors for each source type to estimate the

marginal emissions intensity for each pollutant in each hour-of-sample. Full details on

this are provided in the appendix.

Lastly, I multiply the estimated emissions intensities by the assumed damages from ad-

ditional carbon and local pollution emissions. Marginal abated carbon emissions are val-

ued at £73/ton and local pollution emissions are valued at £8,152/ton for SO2, £5,487/ton

for PM2.5, £3,616/ton for PM10, and £2,272/ton for NOX. These values are taken from

UK government guidance (BEIS, 2021).3. Importantly, the assumptions for the local

pollutants are underpinned by UK government modelling of air pollution transport and

damages.4 Additional details on the approach taken can be found in the appendix.

3My analysis relies on the 2019 guidance and all the values cited are given in real 2021 prices for the
year 2020.

4For all air pollutants I use the baseline national damage assumptions, except for PM2.5 and NOX

14



Capacity Value

The capacity value reflects the value a project provides in being available to match

demand, particularly during peak demand periods when supply is tight. As such it is

calculated per MW capacity installed. For this I rely on data from National Grid’s

Capacity Market Auction, as well as analysis by Harrison et al. (2015). The result is a

capacity value for each project in £/MW/year. In practice the capacity value estimates

are very small and do not meaningfully affect the results.

Learning-By-Doing

As well as their static benefits, constructing a new wind or solar project has important

dynamic effects through learning-by-doing. This is often one of the key reasons cited for

subsidizing renewable energy in the early years of its development, beyond any direct

emissions reduction benefits. The rapid declines in the costs of both wind and solar do

point to significant scope for learning-by-doing effects.

Unfortunately quantifying these benefits is incredibly challenging. Here I rely on a

method set out by Newbery (2018), which produces learning-by-doing benefits in 2015

of £600,000/MW for solar and £250,000/MW for onshore wind. These values decline

steadily over time as each technology matures, and so can be substantially higher for

some of the earliest projects. Ultimately these estimated learning-by-doing benefits are

highly uncertain, but fortunately in most instances do not meaningfully drive my results.

More details on their calculation is found in the appendix.

3.1.2 Costs of Construction and Operation

Capital Costs

It is particularly challenging to get detailed project-level data on costs as this is

usually treated as commercially confidential. Therefore to estimate capital costs I rely

primarily on data from the International Renewable Energy Agency (IRENA), which

provides country-level annual average installed capital costs for onshore wind and solar

projects (IRENA, 2022). These values are based on confidential records of the actual

capital costs of completed projects who then submit data to IRENA.

For offshore wind IRENA only publishes global average values, although given the

UK makes up such a large portion of offshore wind projects these values are likely to be

a decent approximation of costs for the UK. However, due to the size and relatively small

number of offshore wind projects I am able to use direct project specific estimates of the

capital costs for these projects taken from various industry sources and news reports. I

where more detailed assumptions are available that better reflect the chimney stack heights of large
power plants.
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sense check these against the official IRENA annual averages to make sure this approach

is reasonable.5

Once I have an initial estimate for the unit capital costs of each project based on

annual averages, I then make a further adjustment to account for economies-of-scale.

To do this I use data from Lawrence Berkeley National Laboratory (LBNL) on relative

capital costs by project size (Wiser et al., 2022; Bolinger et al., 2022; Barbose et al.,

2022). For example, they show that the per MW capital costs for a 50MW solar project

are around 20% lower than those for a 5MW solar project. The difference is even more

pronounced for wind projects where the equivalent cost reduction is 45%. I therefore use

the LBNL data to scale the unit capital costs of large projects relative to small ones.6

I convert my final estimates to consistent £/MW unit capital costs and multiply by

the capacity of each project to get project-level values for total installed capital costs.7

Operating Costs

To calculate project specific estimates of ongoing operating and maintainence (O&M)

costs I also rely primarily on data from IRENA. Here UK specific data is not consis-

tently available and so for onshore wind I use US values while for solar I use the values

for projects in developed countries (IRENA, 2022). Fortunately variation in average op-

erating costs across developed countries is fairly minimal, and so using non-UK values

is appropriate. For offshore wind I assume the O&M costs are twice those of onshore

wind to capture the increased costs of servicing turbines out at sea. I compare to UK

government estimates to ensure my approach is reasonable throughout.8

An important additional contributor to O&M costs are grid connection and transmis-

sion charges. These costs can vary substantially depending on the location that a wind

or solar project is connected to the grid. To capture this I modify the average O&M

costs based on transmission system charging data from National Grid. This ensures that

projects connecting to the grid in remote regions have appropriately higher costs than

projects located close to demand centers.9 This includes accounting for the additional

grid infrastructure costs associated with the offshore wind.10

I multiply my £/MW/year unit O&M cost estimates by the capacity and lifetime of

5See Appendix A.4 for details.
6Specifically, for wind projects I distinguish different unit capital costs for size bands of: 1-5MW, 5-

20MW, 20-50MW, 50-100MW, 100-200MW and 200+MW. For solar projects the size bands are: 1-2MW,
2-3MW, 3-4MW, 4-5MW, 5-20MW, 20-50MW, 50-100MW and 100+MW.

7Where the available data does not span the full sample period from 1990 to 2025 I extrapolate using
the observed rates of growth/decline over the nearest ten-year period.

8See Appendix A.4 for details.
9For example, the locational portion of transmission charges can vary from more than

£20,000/MW/year in Scotland to less than -£10,000/MW/year near London.
10These add roughly £45,000/MW/year to the costs for offshore wind projects.
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each project to get project-level values for O&M costs.11

3.1.3 Costs to Local Residents

Finally, renewable energy projects create a number of local economic impacts. Of primary

interest here are the visual and noise disameneties associated with these projects. Cred-

ibly estimating these impacts is challenging. Here I draw on empirical evidence of how

wind and solar projects affect nearby residential property values. I apply these hedonic

effects to the value of nearby properties to calculate the local impacts.

I focus on capitalization into residential property values as this likely captures a

significant portion of the local impacts of interest.12 These effects on nearby residents also

seem important in the UK context given the extent to which visual and noise concerns are

raised during the planning process. Other potential local costs and benefits (e.g. impacts

on employment, taxes or wildlife) are discussed at the end of this section on estimating

costs and benefits.

Project and Property Locations

Key to conducting this analysis is determining which properties are close to each

project. For property locations I use data from the Office for National Statistics (ONS)

on the centroid of each post code. These are a very granular geographic measure in the

UK context, with each post code representing around 15 properties.

For project locations I use the centroid of each project. This information is provided

directly in the planning database. Where possible I check these locations against more

detailed spatial information available from Open Street Map. For many larger projects

OSM provides information on the overall footprint of a project (e.g. the area covered by

solar panels or the location of individual wind turbines). Where this information is not

available I approximate the footprint based on the capacity of the project and the size of

the turbines installed. I calculate the distance from each nearby post code to the edge of

the footprint taken up by a given project. I also calculate the direct line-of-sight visibility

from each project to the same set of nearby post codes (see appendix for details).

Hedonic Analysis of Property Value Impacts

A number of studies have used hedonic methods to study the local impacts of wind

projects. Parsons and Heintzelman (2022) conduct a comprehensive review of the litera-

ture and find negative effects of 5%, 4%, 2.6% and 1.2% at distances of within 1km, 2km,

3km and 4km respectively. Gibbons (2015) is the most relevant study for this context

11Where the available data does not span the full sample period from 1990 to 2025 I extrapolate using
the observed rates of growth/decline over the nearest ten-year period.

12There is no research on effects on commercial property values. Haan and Simmler (2018) examine
capitalization of wind energy subsidies into agricultural land values, but not the effect of project siting.
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and finds pronounced effects in the UK for directly visible properties, with reductions

of 5% within 2km, increasing to 12% for some of the largest projects. The evidence for

solar projects is less extensive with only two studies finding relatively limited evidence of

reductions of 1-3% at distances of around 1km Dröes and Koster (2020); Gaur and Lang

(2020).

I conduct a new hedonic analysis that builds on these prior studies and makes a

number of novel contributions. to do this I rely on residential property transactions

data taken from Her Majesty’s Land Registry (HMLR) that covers virtually all sales

of residential properties in England & Wales since 1995 (Her Majesty’s Land Registry,

2022). I collapse the data to postcode annual averages and employ a quasi-experimental

difference-in-difference approach. This hinges on comparing changes in property values

for locations that have a new renewable energy project constructed nearby to changes

in property values for other similar locations that do not have a new renewable energy

project constructed nearby. My preferred specification is an event study of the form:

log(Pit) =

Spost∑

s=Spre

D∑

d=1

C∑

c=1

βd,c,sTit + γXit + θt + λi + ϵit (1)

Here P is the transaction price of properties in post code location, i, in year, t.

Treatment, T , is determined by the distance to a project, the project size in capacity,

and whether a project has come online yet. For distances I use three bins (D = 3) of

0-2km, 2-4km and 4-6km. For capacity I use two bins (C = 2) of 1-10MW and 10+MW.

Prior studies in this area have generally conducted a simple difference-in-difference

analysis with a single post-period dummy variable. Unfortunately this makes it challeng-

ing to see how the estimated effects evolve over time, or to provide any reassurance that

the parallel trends assumption is likely to hold. Here I improve on prior work by estimat-

ing an event study with a set of dummy variables indicating whether a given observation

is s years before (pre) or after (post) the year when a project became operational. I

include ten years of pre-periods (Spre = −10) and five years of post-periods (Spost = 5).13

Unless otherwise specified the treatment effect coefficients, β, capture the percent change

in property values from a new project of capacity c being completed in distance bin d.

In all regressions I limit the sample to properties in locations that are ever within

6km of a project by the end of the period. I focus on properties that are ever near to a

single project to avoid issues of properties being treated multiple times. I also drop any

projects from my sample that do not have observations at least ten years prior and five

13In the basic two-way fixed effects model the first pre-period dummy and the last post-period dummy
capture any observations that are more than ten years before or more than five years after a project
becomes operational.
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years after their start date. Given my property value data spans 1995 to 2022 this means

my sample of projects includes those built between 2005 and 2017. This period is when

the large majority of wind and solar capacity in the UK was completed.

To account for unobservable determinants of property values I use a rich set of location

fixed effects, λi, at the postcode level, and time fixed effects, θt, at the year-of-sample

level. To capture observable determinants of property values a limited set of additional

controls, X, can be included, such as whether a sale is for a new home. These do not

appear to affect the results and so the preferred results do not include these controls.

Standard errors are clustered at the post code level.

Numerous studies have shown that difference-in-difference estimates can be biased

when there is variation in treatment timing (Goodman-Bacon, 2018; Borusyak and Jar-

avel, 2017; Callaway and Sant’Anna, 2019). Here I estimate my effects using the ap-

proach developed by Callaway and Sant’Anna (2019) to tackle this problem. This paper

is therefore the first paper using hedonic methods to quantify the local impacts of renew-

able energy projects that has accounted for this potential source of bias. It appears from

comparing the new estimates with those from a standard two-way fixed effects model

that this source of bias is potentially important in this context. This makes sense given

the extent to which treatment effects are heterogenous and that deployment of projects

rolled out over many years.

One challenge created by this new approach is that currently it is only able to handle

a simple binary treatment. As such it cannot use continuous treatments or interaction

terms to capture important margins of heterogeneity that play a key role in the effects

of interest, such as distance and project size. As such I split my sample and estimate

seperate regressions by distance and capacity bin. In doing so I also take the novel step of

using data on the projects that were proposed but not completed to construct the control

group. The method developed by Callaway and Sant’Anna (2019) requires the definition

of a “never treated” group. Here I am able to use proposed but unsuccessful projects in

the same distance and capacity bin to form the “never treated” group.

Finally, I examine a key source of heterogeneity in my analysis: the line-of-sight

visibility of a project. The visual impact of wind and solar projects is consistently cited

as a key reason that projects are refused planning permission. Prior work has also found

that negative impacts on local property values are primarily due to visual disamenity

(Gibbons, 2015; Sunak and Madlener, 2016). To examine this I conduct a geospatial

analysis to determine whether a property has direct line-of-sight to a project. I then

conduct my analysis seperately for visible and non-visible projects. Full details on the

hedonic approach used can be found in the appendix.

Assumed Capitalization Effects
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After conducting the hedonic analysis I use my estimated effects to inform the sub-

sequent calculation of the local property value impacts of each project. The effects I

find in my hedonic analysis are informative of the general scale of the capitalization, but

given the limitations of the econometric approach they remain fairly coarse in the way

they capture heterogeneity. For instance, it doesn’t seem plausible that at a threshold of

10MW there is a sudden change in these effects or that all projects greater than 10MW

have the same impact at a given distance.

I therefore pick a set of capitalization effects that produces a reasonable range of

property value impacts that can match the hedonic estimates I find, as well as drawing

on those found in the wider literature (Gibbons, 2015; Jensen et al., 2018; Dröes and

Koster, 2020; Gaur and Lang, 2020; Parsons and Heintzelman, 2022). I allow effects to

increase with greater proximity to a project, to increase with project size, and to be

concentrated at properties with direct line-of-sight visibility. Full details can be found in

the appendix.

Property Values by Post Code

To calculate the local external costs of each project, I multiply the assumed capi-

talization effects by the total value of any properties in the relevant surrounding area.

Unfortunately no dataset exists that provides a consistent panel for the value of all prop-

erties at each postcode in the UK over my sample period. As such I estimate the total

value of all properties at each post code in the UK by starting with more aggregated data

and then downscaling these to the post code level.

To get the number of properties in each post code I start with data on annual total

counts of properties at the local authority level from the Valuation Office Agency (VOA)

for England & Wales and from the National Registers of Scotland (NRS) for Scotland.

To downscale the property counts to each post code I proportionally allocate the total

number of properties in each local authority based on census data of the number of

households in each post code.

To get the average price of properties in each post code I start with data on annual

average prices published by the UK Office for National Statistics (ONS) at the local au-

thority level for all local authorities in England, Wales and Scotland. These are originally

constructed using property transaction data, adjusted to reflect the overall composition

of the property stock.

To downscale the average property prices to each post code I once again use property

transaction data from HMLR. I merge a range of other variables that are likely to be

correlated with prices while also being consistently available at the post code level. This

includes measures of whether a post code is rural or urban, index scores of social depri-

vation and census data on the socioeconomic status of residents. I then using machine
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learning to fit a predictive model with the transaction price as my outcome variable and

these various post code-level characteristics as my covariates. The fitted model achieves

an out-of-sample R-squared of 0.57. Once this model is fitted, I make predictions of the

average property price for every post code.

Finally I downscale the local authority annual average prices using my predicted post

code-level prices to get a set of annual average residential property prices at the post

code-level that also remain consistent with the original local authority values. These are

multiplied by the relevant capitalization effects to get the impact of each project on local

property values. Further details can be found in the appendix.

3.1.4 Other Factors and Limitations

There are some limitations to the various costs and benefits estimated here. With regard

to the hedonic approach to valuing the local external costs, the difference-in-difference

method used for estimation will not capture that hedonic price functions may change

over time, introducing a risk of bias (Kuminoff and Pope, 2014). Similarly, assuming the

capitalization effects are equivalent to marginal willingness to pay and multiplying them

by the change in the amenity may not be appropriate for non-marginal changes (Bishop

et al., 2020). Unfortunately it is challenging to make alternative assumptions that can

directly tackle these issues in this context and so these limitations must be kept in mind

when considering the local property value costs.

Local property values may also fail to reflect real external impacts if people are mis-

informed. For instance, there are studies that have tried to understand whether the dis-

turbance from wind turbine noise could have adverse impacts on human health (Schmidt

and Klokker, 2014). While the evidence remains inconclusive, if these health impacts

are meaningful they will likely not be reflected in property values as they are not widely

known.

The focus on reductions to local property values does risk obscuring some of the local

benefits these projects can provide. For instance, projects involve land lease payments

to the landowner of the site. There are also property and business taxes, some of which

may be levied by local government. Some projects provide direct payments to local com-

munities as well. Importantly though many of these local revenue streams are captured

by my estimates of operating costs and can be thought of as transfers. I will return to

the role of local taxation, compensation and ownership as possible policy solutions in the

final portion of the paper.

With regard to other more indirect local effects, persistent impacts on local employ-

ment appear to be limited (Costa and Veiga, 2019). This is consistent with wind and

solar projects requiring minimal direct employment for ongoing maintainence and much
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of the upstream supply chain being located away from the project site. There is some

evidence from the US of broader economic benefits at the county-level, primarily driven

by boosts to local tax revenues (De Silva, McComb and Schiller, 2016; Brunner and

Schwegman, 2022). In the UK these effects are likely to be muted as the relevant taxes

have historically gone directly to the central government budget, rather than remaining

in the local area. Lastly, impacts on wildlife are another factor often cited by opponents

of wind projects in particular, although evidence on the economic nature of these effects

is lacking and so can’t be incorporated here.

Each of the costs and benefits I do estimate are still subject to significant uncertainty.

To deal with this I conduct a sensitivity analysis for some of the most uncertain categories

(i.e., the local property costs and the environmental benefits). One further source of

uncertainty is the discount rate used when converting to present value levelized quantities.

Here I examine a baseline real discount rate of 3.5% in line with UK Treasury guidance,

but conduct a sensitivity analysis using 1.5% and 7%. Beyond examining the sensitivity of

the results to changing specific cost and benefit assumptions, I also examine a sensitivity

to check for the risk of systematic error in the estimation for projects that were not

completed. Lastly, I conduct robustness checks to explore the sensitivity of the results to

more general noise in the estimates.

To keep the analysis tractable I treat each project as if it is “on-the-margin” and

being considered in isolation. The alternative would be to consider many projects in ag-

gregate or treat larger projects as non-marginal. Doing so would require making complex

alternative assumptions about equilibrium electricity prices or project costs, and so for

the purpose of this paper the scenarios analysed later should be interpreted with this

in mind. Treating each project as a marginal project does have the benefit of mirroring

the governmental guidance that planning officials should be following when individually

valuing these projects. I revisit the implications of this assumption later during the dis-

cussion of the results and conduct additional sensitivity analysis to ensure my findings

are robust to this assumption.

An important final limitation is that the data and approaches used are based on

current understanding, which may be quite different from the state of knowledge available

to decisionmakers at the time they were considering a project. Moreover, a mixture of

observed and forecasted data is used when in reality decisionmakers would be relying

on forecasts made at the time. Fully tackling these issues is beyond the scope of this

paper. As such I continue to use values based on current knowledge and methods, but

this should be kept in mind when considering the results.
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3.2 Determinants of Planning Approvals

Armed with a comprehensive assessment of the costs and benefits of each project, I next

move to evaluating how effectively policymakers balance these different impacts. To do

this I employ a fixed effects regression model that links variation in project costs and

benefits with the likelihood of a project being approved.

approveiat = β1C
prop
i + β2C

other
i + β3B

elec
i + θt + λa + ϵiat (2)

The observations here are the roughly four thousand wind and solar projects in my

sample. The dependent variable is a binary approval decision indicator, approve, for each

project, i, in local authority, a, in year, t and it is regressed on the local property costs,

Cprop, the other capital and operating costs, Cother, and the benefits of the electricity

production, Belec.14

In line with the earlier descriptive analysis in Table 2, the baseline model I estimate

does not include any controls or fixed effects. The goal is to get a sense for how the

entire variation in costs and benefits aligns with the approval decisions made across the

permitting process. I then examine how the findings change once I include a set of fixed

effects for each year-of-sample, θ, and local authority, λ. This ensures the variation in

costs and benefits more explicitly relates to decisionmaking within a given local authority.

Naturally including these fixed effects does absorb a lot of the available variation

which may present challenges with statistical power. To give some context, once the in-

cluded fixed effects are accounted for the remaining variation in property costs is driven

by within-local-authority variation in property values, population density, project size

and project visibility. The remaining variation in project benefits is primarily due to

differences in the electricity productivity of each project, which in turn is a function of

within-local-authority variation in wind conditions (i.e. how windy it is on average and

how hourly fluctuations differ from other projects) and technology choice (i.e. which tur-

bine is installed). The variation in other projects costs comes from within-local-authority

variation in project sizes (i.e. the way their unit capital costs are subject to economies-

of-scale across several size categories) while the locational variation in operational costs

takes place across regions at a more aggregated level than a local authority.

In the context being studied we might expect an idealized global social planner to find

that an equivalent change in costs or benefits should have the same impact on approval

likelihood, irrespective of where it occurs (i.e. −β1 = −β2 = β3 > 0). A national planner

14I examine specifications where the costs and benefits enter linearly or in logs. My main specifications
are estimated using a linear probability model. Estimation using a logit model gives qualitatively similar
results. Results for alternative specifications can be found in the appendix.
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is likely to get pretty close to this, although most of the carbon emission reduction benefits

do accrue to other countries. However, for a local planner we might reasonably expect

them to only pay attention to the local net benefits as these are the ones that directly

affect constituents in their jurisdiction (i.e. −β1 > −β2 = β3 = 0).15

To be clear, the main local impacts for the local planning authorities are the property

value impacts arising for their nearby residents. All other costs and benefits can be

viewed as externalised or diffuse from the perspective of the local authority where a wind

or solar project is being sited. It is true that displacing electricity from fossil power plants

can lead to changes to air pollution that are geographically concentrated. However, the

UK grid is relatively well integrated and most wind and solar projects are not sited in

industrial areas near existing fossil power plants. As such any benefits from changes to

air pollution will almost certainly be concentrated far from the local authority where a

new wind or solar project is being sited.

Lastly, I extend the analysis to look at differential effects to see whether planning

decisions differ based on: 1) whether a project is in a wealthy area; 2) whether the local

authority was politically conservative; and 3) whether the decision was made nationally

or locally. Areas were classified as wealthy based on data from the UK’s Index of Multiple

Deprivation.16 For the political makeup of a local authority, I use data on local elections to

identify areas that have a majority of Conservative party councillors.17 National control

can be directly observed in the planning data.

3.3 Quantifying Misallocated Investment

If the planning and permitting process places outsize emphasis on avoiding certain costs

(e.g. reductions in local property values) then socially beneficial projects will be consis-

tently refused, leading to under-investment. Even if aggregate deployment is unaffected,

a systematic bias towards approving more expensive projects could still emerge. This

could take the form of building solar power instead of wind; building more remote wind

projects or even moving projects offshore.

To try and quantify the potential for insufficient or misallocated investment, I use

my estimates of project specific costs and benefits to find an alternative “best” set of

proposed projects. I do this in two main ways.

15Altruistic motivations are an obvious exception to this though.
16The index assigns neighborhoods a score based on their level of deprivation on a range of measures,

where high scores indicate high levels of deprivation. The average deprivation score was calculated for
post codes in a 10km radius of each project, with scores below the national median being classed as
wealthy.

17The local elections data is from Election Centre. In the UK, councillors for each local authority are
elected at least every four years and the vast majority of councillors are affiliated with one of the main
UK political parties.
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First, I find the set of proposed projects that can produce the observed deployment of

renewable energy at least cost. I start by grouping projects by the local authority where

they are located and their actual or expected start year. I then rank them in order of

social net present value. I sum up the least cost set of projects necessary to reproduce

the observed increase in renewable energy production for each local authority in each

year. I then compare the cumulative total costs and benefits between this least cost set

of projects and the actual ones that were built. After looking at reallocation within local

authorities within each year, I then examine the gains from allowing reallocation across

local authorities and across years. Preserving the existing level of aggregate deployment

and considering reallocation across space and time in this way also helps bolster the plau-

sibility of assuming that existing prices and costs can be used in the valuation analysis,

as set out earlier.

Second, I seperately examine the potential gains from approving and constructing

all positive net present value projects. This latter approach is particularly valuable

for understanding possible under-investment. One challenge this does raise is that it

necessarily involves assuming a different (and generally larger) deployment of renewable

energy than already seen to date. Where these changes are non-marginal this does raise

potential concerns with the original valuation analysis that relies on existing prices and

costs. I cover this issue in more detail in the discussion of the results.

3.4 Transfer Payments to Local Residents

A range of policy solutions could help resolve the misalignment between local and wider

social incentives, from permitting process reforms to increased local ownership. One

natural solution may be to introduce some form of direct transfers to affected local res-

idents. This practice does already happen for some projects, with voluntary payments

being made by wind and solar developers to local communities in the form of grants to

fund public services or discounts on electricity bills.

I use my estimates of household specific impacts on property values to examine a range

of simple transfer schemes. At the most basic these involve making lump sum payments to

all affected households within a certain distance. Increasing complexity involves allowing

payments to vary based on the capacity of the project, how close a resident is to the

project, line-of-sight visibility and average local property values.

The goal here is to understand if it is feasible to offset the bulk of the local external

costs to nearby residents using a few simple project and property characteristics, and how

cost effective transfers might be for developers. Full details can be found in the appendix.
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4 Results

4.1 Project Costs and Benefits

Figure 2 provides the results of the hedonic analysis. I find strong evidence of a reduction

in property values for properties located within 4km of a new wind project and with direct

line-of-sight visibility. These effects are much more pronounced for larger projects, with

reductions of 8-10% for projects larger than 10MW. There is also some limited evidence

of potentially smaller effects out to 6km. As for solar projects, I find no clear evidence of

any reduction in property values. In all cases though the event study provides supportive

evidence that the treated and control group are on similar trajectories in the pre-period.

Further details on the results of the hedonic analysis, and the estimation of the other

categories of costs and benefits, can be found in the appendix.

Figure 2: Estimated Capitalization into Nearby Property Values

Notes: This figure shows the estimated capitalization effects of new wind and solar projects on
nearby property values. The left panels are for solar projects and the right panels are for wind
projects, with subpanels by capacity bin. The figure shows results for visible projects with vertical
panels broken up by distance bin.

Figure 3 summarizes the estimated costs and benefits for all the wind and solar

projects studied here. The top panel shows how annual averages of these costs and

benefits have changed over time. The large declines in project capital costs are clearly

visible and reflect the substantial technological progress that has taken place over this

period. The declining environmental benefits over time are also striking and reflect the

fact that the marginal electricity production being displaced by a project built in 1990

was much dirtier than for a project built in 2020. The bottom panel shows the full
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ranking of projects in order of their total net present value. This makes clear the signif-

icant heterogeneity across projects, particularly with regard to the local property value

impacts.

4.2 Determinants of planning approvals

Table 3 presents the results of the planning approvals analysis. The purpose is to under-

stand how responsive planning officials are to different costs and benefits when deciding

whether to approve a project. Given the lack of any local external impacts for solar

projects I only present the results for wind projects.

Table 3: Planning Process Regressions for Project Costs and Benefits

Model: (1) (2) (3) (4) (5) (6) (7) (8)

Variables
Cost Property (£10m) -0.0071∗ 0.0014 -0.0024 -0.0098∗∗ -0.0014 0.0069 0.0025 -0.0039

(0.0038) (0.0046) (0.0051) (0.0041) (0.0061) (0.0069) (0.0063) (0.0065)
Cost Other (£10m) 0.0022∗∗∗ 0.0042 0.0022∗∗∗ 0.0295∗∗∗ 0.0023∗∗∗ 0.0011 0.0025∗∗∗ -0.0094

(0.0007) (0.0040) (0.0008) (0.0105) (0.0008) (0.0039) (0.0009) (0.0133)
Benefits (£10m) -0.0013∗∗ -0.0012 -0.0013∗∗ -0.0270∗∗∗ -0.0015∗∗ 0.0002 -0.0017∗∗ -0.0030

(0.0006) (0.0026) (0.0007) (0.0072) (0.0007) (0.0031) (0.0008) (0.0090)
Cost Property (£10m) x Interaction -0.0236∗∗ -0.0108 0.0342∗∗∗ -0.0289∗∗ -0.0138 0.0266∗∗

(0.0094) (0.0075) (0.0122) (0.0122) (0.0122) (0.0128)
Cost Other (£10m) x Interaction 0.0042 -0.0001 -0.0276∗∗∗ 0.0087 -0.0011 0.0117

(0.0082) (0.0020) (0.0106) (0.0083) (0.0018) (0.0133)
Benefits (£10m) x Interaction -0.0042 0.0001 0.0260∗∗∗ -0.0074 0.0011 0.0015

(0.0051) (0.0017) (0.0073) (0.0051) (0.0016) (0.0089)
Interaction: Wealthy No Yes No No No Yes No No
Interaction: Conservative No No Yes No No No Yes No
Interaction: National No No No Yes No No No Yes

Fixed-effects
Local Authority Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 1,942 1,889 1,936 1,942 1,942 1,889 1,936 1,942
R2 0.01340 0.00969 0.01435 0.02570 0.22330 0.22141 0.22171 0.23033
Within R2 0.01068 0.00737 0.01150 0.01963
-β1=-β2 p-value 0.0177 0.6450 0.3829 0.0007 0.5410 0.4299 0.9990 0.7134
-β1=β3 p-value 0.0300 0.9778 0.4742 7.84× 10−6 0.6353 0.3186 0.8997 0.5206
-β1=-β2 p-value (Interaction) 0.0083 0.0106 0.0519 0.0138 0.2284 0.0823
-β1=β3 p-value (Interaction) 0.0055 0.0149 0.0444 0.0082 0.2595 0.0717

Clustered (Local Authority) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table shows the impact on approval probability for changes to various project costs
and benefits. Columns reflect the range of fixed effects included and differential effects studied.
Columns 1 to 4 are the baseline model with no fixed effects. Columns 5 to 8 include year-of-sample
and local authority fixed effects. Models including an interaction effect specify the name of the
interaction variable in the rows below. “Wealthy” refers to interaction with a dummy for whether a
local authority is wealthier than average. The “Conservative” refers to interaction with a dummy for
whether a local authority is politically conservative. “National” refers to interaction with a dummy
for whether a project’s planning application was decided at the national level. Coefficients reflect
the effect of a £10 million change in costs and benefits.

For wind projects, the baseline results reveal fairly consistent evidence of a statistically

significant effect for local property values. The coefficient indicates that a £10 million
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Figure 3: Estimated Project Costs and Benefits

Notes: This figure shows the estimated project-level costs and benefits for all the projects submitted
for planning approval since 1990. The left panel is for solar projects and the right panel is for wind
projects. All value categories have been converted to consistent levelized net present value terms in
£/MWh. These values use a 3.5% real discount rate in line with UK Treasury guidance. Assuming
a higher 7% real discount rate produces estimates more in line with industry figures on private
developer levelized costs. The top figure shows how average costs and benefits over time. In each
year the median was calculated for each value category across all projects that were or would have
been commissioned in that year. The black dashes at the bottom of the plot indicate the number of
projects in a given year to convey when the bulk of projects were being proposed and commissioned.
The bottom figure shows the full ranking of projects in order of their total net present value. The
width of each bar is determined by the capacity of each project.
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increase in losses to nearby residential property values reduces the likelihood of project

approval by 0.7%. By comparison, the coefficients on other non-local costs and benefits

are much smaller and actually have the wrong sign, indicating that projects that are less

costly to build or more productive are less likely to be approved.18 Tests of the equality

of coefficients reveal that there is statistical evidence that local property value impacts

are indeed treated differently to other non-local costs and benefits.

Furthermore, the results with interaction effects reveal additional interesting findings.

I find that it is wealthy areas where the sensitivity to local property value impacts is

concentrated. Here a £10 million increase in losses to nearby residential property values

reduces the likelihood of project approval by 2.4%. In less wealthy areas there is no signif-

icant effect. The tests of the equality of coefficients also indicate it is only wealthy areas

where the sensitivity to local property impacts differs significantly from the sensitivity to

other costs and benefits.

When focusing on political makeup, more conservative areas appear to be the ones

where the sensitivity of approval decisions to local property value impacts differs signif-

icantly from the sensitivity to other costs and benefits. Similarly, when decisionmaking

authority rests at the local level I again find that sensitivity to local propery value impacts

differs from the sensitivity to other costs and benefits. Where decisions are made nation-

ally the mismatch is counteracted, in keeping with the idea that national decisionmakers

pay attention to a broader array of factors than local decisionmakers.

I also explore whether equivalent findings emerge when only focusing on within-local-

authority variation. Directionally many of the estimated effects remain the same, al-

though the more limited within-local-authority variation in costs and benefits does re-

duce the statistical power of the analysis. Notably though, the results that focus on

wealthy areas continue to be the ones that most clearly hold. This is further supported

by the tests on the equality of coefficients, with wealthy areas again appearing to be more

sensitive to local property impacts than to other non-local costs and benefits.

Overall, the particular sensitivity of approval decisions to local property costs is con-

sistent with the idea that local decisionmakers are incentivized to focus on costs to local

actors. This appears to be especially true in wealthy areas that are more inclined and

better able to resist new wind power deployment. By contrast, the other non-local costs

and benefits do not appear to have the same impact on approval probability, and often

the sign of the coefficients is reversed. This is consistent with the idea that planning

18This is a consistent pattern in much of the analysis. It is notable that local property costs are
negatively correlated with other non-local costs and positively correlated with non-local benefits. This is
the case when considering variation across all projects and when accounting for local authority and year
fixed effects. To the extent there are some unobserved local costs being picked up by these measures of
non-local costs and benefits this might help rationalize these effects and provide further support for the
role of local factors in guiding planning decisions.
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officials are not responsive to these wider impacts, perhaps because they are externalized

to non-local actors.

These findings are robust to a range of alternative specifications, such as considering

logarithmic changes in costs and benefits (rather than linear) and when estimating using

logit instead of a linear probability model. Results with alternative specifications can

be found in the appendix. Furthermore, the costs and benefits used in this regression

analysis are necessarily uncertain. It is difficult to say whether any such measurement

error is classical or systematically related to project characterisitcs. If it is the former, this

would tend to lead to attenuation bias. I check this by instrumenting for local property

costs with a historic measure of population density. I do indeed find that the results

have the same pattern as found in the main analysis but with even larger effects for the

local property value costs. These additional results can be found in the appendix. That I

find significant coefficients and differences even in the presence of potential measurement

error suggests the main findings may understate the level of disparity between the way

planners account for local and non-local factors.

Lastly, to further support the idea that the particular sensitivity of planning decisions

to local property impacts is indicative of local opposition or NIMBY attitudes I gathered

information on the numbers of public comments submitted for a subset of wind projects in

Scotland. Here I do indeed find evidence that the number of public comments is higher for

projects that have larger local impacts on nearby property values. I also find that projects

with more public comments are less likely to be approved, with ten additional objecting

comments reducing approval probability by 1.2%. Further detail on this analysis can be

found in the appendix.

4.3 Misallocated Investment

4.3.1 Main Misallocation Findings

Table 4 shows that the potential gains from more efficiently reallocating investment

amongst the set of proposed projects. A range of possible scenarios are examined to

understand the likely drivers of misallocation.

To begin with we can see the observed actual set of projects comprise 41GW of wind

and solar capacity, and have a lifetime electricity output of 2,904 TWh. The costs of

constructing and operating these projects is £142 billion, and yields benefits of £160

billion. Local property value costs are around £8.5 billion. The result is a social net

present value of £9 billion.

Now I consider several counterfactual scenarios. If the planning process is producing

efficient outcomes we would expect relatively small differences between the observed set of
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Table 4: Misallocated Investment Results

No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2904 41 1883 0.78 0.30 0.26 -8.5 -142.4 160.1 9.3
1 Best Fixed Fixed 2904 40 1731 0.79 0.29 0.29 -6.8 -136.9 159.2 15.4
2 Best - Fixed 2904 40 1375 0.76 0.28 0.32 -3.8 -114.7 153.7 35.2
3 Best Fixed - 2904 43 1593 0.76 0.46 0.47 -2.9 -107.4 157.2 46.8
4 Best - - 4509 66 2566 0.74 0.40 0.39 -4.5 -170.7 239.3 64.1

Notes: This table shows the aggregate costs and benefits of the actual observed set of wind and
solar projects, as well as the same information for a range scenarios identifying the least cost set of
proposed projects. All values are the cumulative lifetime totals for all wind and solar projects. The
“Actual” row refers to the observed set of projects that were actually built. The “Best” rows then
refer to different scenarios for the optimal set of projects subject to a series of constraints on the
extent to which deployment can be reallocated. “Scenario 1” allows reallocation subject to the total
output remaining unchanged by year and local authority. “Scenario 2” allows reallocation subject to
the total output remaining unchanged by local authority. “Scenario 3” allows reallocation subject to
the total output remaining unchanged by year. “Scenario 4” allows complete reallocation and so may
lead to a different total output than was actually observed. Information on project characteristics
includes total output, capacity and number of projects, as well as measures of the share of capacity
in Scotland and the share of capacity that has any local property costs.

projects and some hypothetical alternative set of proposed projects. If the planning pro-

cess is producing inefficient outcomes we would expect there are many socially beneficial

projects that did not go ahead after failing to receive permitting approval. Importantly,

this entire analysis is conditional on the set of projects that were actually proposed, and

so in the likely case where the planning process deters projects from being proposed in

the first place this analysis will understate the likely cost of misallocation.

To start let us consider the scope for reallocation across projects to be highly con-

strained. If reallocation is only possible within a given local authority and within a given

year, we see that social net present value can be increased by just over £6 billion (Scenario

1). When compared to observed total capital and operating costs this is equivalent to a

4% cost saving. Importantly, these gains are possible despite the fact that very few local

authorities have more than one project proposed in a given year.19

Moving to allowing reallocation within a given local authority but across all years

causes social net present value to rise more significantly by £26 billion (Scenario 2). This

is equivalent to a cost saving of 18%. Focusing on within-local-authority reallocation

in this way indicates there is significant inefficiency in local authority decisionmaking

when considering the range of projects proposed in a given area. Again though, for most

local authorities this still entails reallocating across a relatively small pool of proposed

projects.20

19Only 4% of local authorities in a given year have more than one proposed wind project and only
5% of local authorities in a given year have more than one proposed solar project.

20Each local authority sees an average of seven wind projects and eight solar projects over the sample
period. The distribution is heavily skewed with only 13% of local authorities having more than ten wind
projects and only 24% of local authorities having more than ten solar projects.
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Moving to allowing reallocation across local authorities but within a given year leads

to an even larger increase in social net present value of £38 billion (Scenario 3). This

is equivalent to a cost saving of 26%. As with the first scenario this approach preserves

the existing deployment of capacity over time. While less of a direct test of the role

of decisionmaking from individual local authorities, this scenario does help illuminate

inefficiencies from the lack of coordination in planning decisions across space.

Finally, I examine the result of allowing full reallocation. This is equivalent to con-

sidering the impact of approving and constructing all positive net present value projects.

Here I find that total lifetime output from wind and solar increases by 55% from observed

levels (Scenario 4). This is potential evidence of substantial under-investment in renew-

able energy, particularly for wind power, with many socially beneficial projects failing to

go ahead. Notably, total local property value costs also increase in this case, suggesting

there are many projects worth pursuing even where they create adverse external costs to

nearby residents.

4.3.2 Discussion of Misallocation Results

The large misallocation costs found here raise important questions about how effectively

decisions are being made about which renewable energy projects to build and where.

These costs can also be clearly attributed to failings in the permitting process. When

a socially beneficial project fails to be built, this could be for two main reasons: 1) the

project was refused planning permission, or 2) the project was approved for planning

permission but did not go ahead for other reasons (e.g. failure to secure financing). In

all scenarios the significant majority of socially beneficial projects that failed to be built

were refused planning permission.

A subsequent question is: what aspects of planning decisionmaking are leading to

these inefficient outcomes? The first explanation discussed most directly here has been the

role of local opposition or NIMBYism, either from residents or from planners themselves.

Put another way, the incentives local communities and politicians have to resist projects

in their area that they perceive as having concentrated harms, while notionally supporting

the deployment of renewable energy more generally. As discussed previously, planners in

this context have strong incentives to pay attention to local impacts given that decisions

are mostly made by local planning authorities. These jurisdictions also do not capture

many of the benefits of renewable energy projects. The value of the electricity produced

and the reductions in carbon emissions and local pollution are not concentrated in the

local area, and often arise regionally, nationally or even globally. There are also minimal

boosts to local tax revenues in the UK and a lack of long-term impacts on employment.

In this setting it is the direct external costs on nearby residents through visual and noise
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disamenities that are likely to be most salient, and these are reflected here by impacts on

local property values. The regression analysis of approval decisions provided support for

this explanation, highlighting the sensitivity of planning decisions to local property value

costs, especially in wealthy areas. I also find evidence that projects with larger property

value impacts are subject to more public comments, and that increased public comments

are associated with a lower chance of approval.

If the local opposition story does apply here we would expect the misallocation analysis

to reveal that under an optimal scenario many more projects would be approved. This

is indeed what I find: many socially desirable projects were refused planning permission

and under an optimal scenario the lifetime output from wind and solar would be 55%

higher than observed levels (Scenario 4). We would also expect there to be significant

gains available simply from reallocating projects within a local authority, which again is

what I find (Scenarios 1 and 2).

Lastly, we might also expect that after reallocation the total local property value

costs should increase, which would be compensated for by changes to the other non-

local costs and benefits that were not being adequately accounted for. I do find that

the share of project capacity imposing local property costs increases substantially across

the various reallocation scenarios. However, reallocation does not increase total local

property value costs - instead these fall across reallocation scenarios which seems at odds

with the NIMBYism explanation. This can largely be explained by the fact that the

reductions in total local property costs in the base case are mostly driven by several

small projects that are significant outliers in terms of their local property costs. Often

these are individual turbines constructed on industrial sites near urban centers and so

may reflect imperfections in the application of the capitalization effects in this context.

For instance, it is possible these kinds of projects may have unobserved local benefits (i.e.

they are directly owned by a local industrial firm) or may not impose as severe visual

disamenity if already located in an industrial area. Planners may also be more inclined

to approve small projects in general as seen in the earlier descriptive analysis. This might

be because they view several small projects as preferable to approving a single larger one

that exposes one community to a more substantial degree of external impacts.

To further explore this issue I conduct a sensitivity analysis focusing only on the larger

projects. I find that projects smaller than 10MW (1% of existing output) are responsible

for almost two thirds of local property value impacts. Limiting the analysis to reallocation

amongst projects greater than 25MW (84% of existing output) yields similar social net

present value gains to the base case across the various reallocation scenarios while also

consistently increasing total local property costs. The earlier planning approval regression

results also hold when focusing on larger projects in a similar manner. Full details on the

sensitivity results are in the appendix.
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A second explanation for the observed misallocation costs could be a lack of regional

coordination. With most decisions being made by local authorities, the fragmented na-

ture of the planning process means decisionmakers in one jurisdiction are not considering

the relative merits of similar projects in other jurisdictions, some of which may be more

worthy of approval. If this is the case we would expect there to be significant gains avail-

able simply from reallocating projects across local authorities, which I do find (Scenario

3). However, this explanation does not necessarily imply that planners would systemat-

ically approve too few projects overall, where as I do find evidence of underinvestment

(Scenario 4).

A third explanation is that planners simply lack the expertise to distiguish “good”

projects from “bad” ones. However, if this was the case we would expect their decisions

to be largely unresponsive to the various costs and benefits quantified here. The planning

approvals regression analysis showed that decisions are actually systematically related to

variation in certain impacts (i.e. local property costs) and if anything have the wrong

sign when it comes to the other non-local costs and benefits. This explanation also does

not necessarily imply that planners would systematically approve too few projects overall,

and yet that is what I find (Scenario 4).

Overall it is hard to say definitively to what extent each of these competing explana-

tions is most responsible for the observed costs from misallocation. In practice it is likely

some combination of all three. However, given the earlier planning approvals regression

analysis and some key features of the observed misallocation analysis it does seem that

local opposition and incentives for planners to focus on local factors is a significant driver

of inefficient permitting for renewable energy.

Importantly there are a few caveats to note with this misallocation analysis. The

first is that my findings reflect the set of proposed projects that even made it to the

planning submission stage. Misallocation costs are likely to be considerably larger when

accounting for the the full range of hypothetical projects that could have been proposed.

For instance, changes made to the planning process for onshore wind projects in England

& Wales after 2015 led to a significant drop in planning applications, over and above any

fall in the approval rate (Windemer, 2023). If onshore wind projects had continued to be

proposed in England & Wales at the rate seen in the decade before 2015, as they did in

Scotland, an additional 5.6GW would have been proposed by 2022, representing a 13%

increase on the current total in the sample. Moreover, current forecasts anticipate that

installed onshore wind power capacity will double from existing levels to around 23GW

by 2050 (NGET, 2022), and the technical potential for the UK is projected to be twenty

times that level (Eurek et al., 2017). The proposed projects in my sample therefore

represent a partial picture of the full set of optimal locations potentially available.
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A second caveat is that the various scenarios explored (especially the final one) may

entail non-marginal changes in renewable investment that alter the pace, scale and se-

quencing of deployment. This could have dynamic effects on electricity prices, capital

costs or cumulative impacts on property values which are not fully accounted for. It

is difficult to say if this will tend to bias the estimates of misallocation costs upwards

or downwards. On the one hand, a larger deployment of renewable energy will tend to

depress wholesale prices, and in concentrated locations there can be negative spillovers

across projects, such as through transmission congestion or wake effects for wind turbines

(Lundquist et al., 2018). Failing to account for these factors would lead the current anal-

ysis to overstate the potential gains from reallocation. On the other hand, there may be

economies-of-scale and learning-by-doing effects from adding many projects, especially if

these are located in a specific area. This could arise through the build-out of the necessary

supply chain capacity or where expanded deployment facilitates spreading transmission

costs over more projects. Failing to account for these factors would lead the current

analysis to understate potential gains from reallocation. The sign of any bias this might

create in the misallocation analysis is therefore ambiguous. Ultimately accounting for

these different dynamics would require making complex alternative assumptions about

equilibrium prices and costs in ways that are not feasible here.

To provide further reassurance that these non-marginal changes are not unduly af-

fecting the findings I conduct a sensitivity analysis that adjusts downwards the private

value of electricity output for each project. This adjustment is designed to reflect a plau-

sible reduction to wholesale prices that would be caused by the expanded deployment of

renewable energy envisaged under the full reallocation scenario. This sensitivity does in-

deed reduce the gains from reallocation, but the effect is very small, with full reallocation

resulting in a 45% increase in deployment, rather than the 55% found in the base case.

Overall the core findings of the analysis remain robust to this change. Full details are in

the appendix.

The third caveat is that these findings are understandably subject to uncertainties

in the underlying estimates of costs and benefits. The concern here may be that key

costs and benefits could plausibly be calculated using alternative assumptions and that

this might meaningfully alter the core findings. There is also a risk that measurement

error more generally could bias the calculation of misallocation by making it appear as

if there are greater inefficiencies than may be the case. As a robustness check I therefore

examine a range of sensitivities to the underlying estimates of costs and benefits (i.e.,

with regard to local property value costs, environmental benefits, discount rates, error in

the attractiveness of cancelled projects, more general noise in the estimates, restricting

reallocation across technology types, dropping small projects, and spatial variation in

wholesale prices). Across all of these various sensitivities it is striking that the same
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broad findings emerge: that there is evidence of significant inefficiencies in the observed

allocation and scale of investment, with the planning process acting as a key barrier.

Further detail on the sensitivity analyses are in the appendix.

Overall then, I consistently find evidence that the fragmented and localized nature of

the planning process does risk significant spatial misallocation of infrastructure invest-

ment. In terms of under-investment, the analysis here indicates that building 55% more

wind and solar power to date would have been socially desirable. That these projects

were not built, and that the refusal decisions that blocked them are systematically linked

to impacts on local property values, suggests local opposition and NIMBYism does play

a role here. Even when constraining the analysis to reproduce the observed deployment

of total wind and solar output, significant cost savings are still plausible.

4.4 Transfer Payments to Local Residents

One possible policy solution that could help remedy some of the inefficiencies in the

planning process is to make transfer payments to local residents in order to better align

local and wider social incentives. Figure 4 shows the external costs to local property

values for all nearby residents affected by the socially desirable wind projects in the

sample. For most residents the impacts are relatively minor, although there is a long tail

of larger impacts for those near particularly expensive properties.

Figure 4 then illustrates how relatively simple schemes for targeting payments to local

residents can help offset the impacts on affected households. These range from simple

flat payments based on distance, to payments that account for project size and are made

proportional to the average local authority property value. Most individual payments

to households end up being on the order of a few hundred pounds, but some can reach

several thousand pounds. Of course, there are limits to the extent to which a policy can

target heterogeneous affected individuals without distorting household incentives (Sallee,

2019). It is not clear that significantly increasing complexity further to improve targeting

would be desirable from an economic, political or administrative standpoint.

From the developer perspective, the capacity-weighted average cost of these transfer

schemes for the socially beneficial projects is around £6,500/MW/year. This masks

significant variation with the bottom 10% of projects making virtually zero payments

and the top 10% of projects making payments in excess of around £20,000/MW/year.

These overall costs are actually quite similar in size to the voluntary payments that

some developers have already made. In Scotland, onshore wind projects with volun-

tary community benefits funds have made payments of around £2,000-4,000/MW/year.

The latest government guidance calls for developers to adopt funds with a value of
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Figure 4: Local Compensation Schemes

Notes: This figure shows the net external costs incurred by local residents due to the socially
desirable set of wind projects in the sample. The left-most panel shows a histogram of the observed
uncompensated distribution of impacts on local residents. The three remaining panels then show the
net impact on local residents after accounting for several different compensation schemes of varying
levels of complexity.

£5,000/MW/year and there are even some projects making payments of more than

£10,000/MW/year. The similarity between my estimates of required transfers and actual

voluntary payments could suggest that the status quo of Coasian bargaining is actually

functioning fairly well.

However, some caution is warranted. Available data is based on a selected sample

of developers that self-report information on their community engagement for successful

projects. Whether all local communities are receiving these kinds of opportunities remains

unclear. It is possible there are many communities that are poorly placed to negotiate

a desirable settlement. Moreover, most existing community benefits funds appear to

provide grants to local community organisations. Very few make direct payments to

nearby residents. Examining the effectiveness of these community payment schemes is

an important area for further study.

5 Conclusion

In this paper I estimate the economic costs of NIMBYism and local planning restrictions

by examining the case of renewable energy projects. First I estimate the full range of costs

and benefits for each project and find significant heterogeneity. This is particularly the

case for the local external costs of these projects, which I estimate here using a hedonic
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analysis of the impacts on local property values. I then show how planning decisions are

particularly responsive to local factors, especially in wealthier areas. This is consistent

with the localized nature the planning and permitting process, but raises the risk that

the wider social benefits of renewable energy are systematically overlooked. In fact I find

that inefficiencies in planning and permitting decisions have contributed to a significant

misallocation of investment. The same rate of deployment could likely have been achieved

at much lower cost, and evidence of significant underinvestment indicates that a much

more expansive rollout of wind and solar power would have been socially desirable.

There are a range of policy solutions that could remedy this misalignment between

local and wider social incentives. The approach of providing direct payments to affected

local residents was explored. Providing these kinds of community benefits is voluntary in

the UK so they can vary significantly in prevalence, size and structure. In many instances

the current process of Coasian bargaining does appear to be resulting in payments of a

similar scale to the local costs estimated here. However, where negotiation frictions are

a concern, mandating a level of local payments could be desirable. My analysis indicates

that payments could be also better targeted if they accounted for important margins of

heterogeneity, such as proximity or visibility.

Ultimately though the siting of any new infrastructure project is at some level a politi-

cal decision. Reforming the extent of local control over planning and permitting decisions

is therefore an important issue that is raised by the findings in this paper. Of course,

shifting more control over siting decisions to regional or national policymakers could back-

fire if it results in affected residents believing their concerns are not being heeded. But

recent evidence that boosts to local tax revenues can increase the attractiveness of new

wind and solar projects is encouraging (Germeshausen, Heim and Wagner, 2021; Brunner

and Schwegman, 2022). It may be that pairing decisionmaking reforms with favorable

tax changes could help offset the objections of local residents and officials.

Managing the differences between local and national decisionmaking is a significant

challenge, and is not unique to renewable energy. For many other forms of infrastructure

there is a tension between meeting the needs of local residents and the needs of society

as a whole. Finding policies to resolve those tensions will require further research and

experimentation. The findings in this paper on the shortfalls of the current planning and

permitting process suggest this work is sorely needed.
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Barbose, Galen, Näım Darghouth, Eric O’Shaughnessy, and Sydney Forrester.

2022. “Tracking the Sun: Pricing and Design Trends for Distributed Photovoltaic Sys-

tems in the United States, 2022 Edition.” Office of Scientific and Technical Information

(OSTI) Report.

BEIS. 2021. “Green Book supplementary guidance: valuation of energy use and green-

house gas emissions for appraisal.” Department for Business, Energy & Industrial Strat-

egy Technical Report.

BEIS. 2022. “Renewable Energy Planning Database.” Department for Business, Energy

& Industrial Strategy Dataset.

Bishop, Kelly C, Nicolai V Kuminoff, H Spencer Banzhaf, Kevin J Boyle,

Kathrine von Gravenitz, Jaren C Pope, V Kerry Smith, and Christopher D

Timmins. 2020. “Best Practices for Using Hedonic Property Value Models to Measure

Willingness to Pay for Environmental Quality.” Review of Environmental Economics

and Policy, 14(2): 260–281.

Bolinger, Mark, Joachim Seel, Cody Warner, and Dana Robson. 2022. “Utility-

Scale Solar Report: 2022 Edition.” Office of Scientific and Technical Information

(OSTI) Report.

Borenstein, Severin, and James B Bushnell. 2018. “Do Two Electricity Pricing

Wrongs Make a Right? Cost Recovery, Externalities, and Efficiency.” National Bureau

of Economic Research Working Paper 24756.

Borenstein, Severin, and Ryan Kellogg. 2022. “Carbon Pricing, Clean Electricity

Standards, and Clean Electricity Subsidies on the Path to Zero Emissions.” National

Bureau of Economic Research Working Paper 30263.

Borusyak, Kirill, and Xavier Jaravel. 2017. “Revisiting Event Study Designs.” Avail-

able at SSRN 2826228.

39



Brunner, Eric J., and David J. Schwegman. 2022. “Commercial wind energy instal-

lations and local economic development: Evidence from U.S. counties.” Energy Policy,

165: 112993.

Callaway, Brantly, and Pedro H. C. Sant’Anna. 2019. “Difference-in-Differences

with Multiple Time Periods.” SSRN Working Paper.

Callaway, Duncan S., Meredith Fowlie, and Gavin McCormick. 2018. “Loca-

tion, Location, Location: The Variable Value of Renewable Energy and Demand-

Side Efficiency Resources.” Journal of the Association of Environmental and Resource

Economists, 5(1): 39 – 75.

Carley, Sanya, and David M. Konisky. 2020. “The justice and equity implications

of the clean energy transition.” Nature Energy, 5: 569.

Carley, Sanya, David M Konisky, Zoya Atiq, and Nick Land. 2020. “Energy

infrastructure, NIMBYism, and public opinion: a systematic literature review of three

decades of empirical survey literature.” Environmental Research Letters, 15(9): 093007.

Chen, Binkai, Ming Lu, Christopher Timmins, and Kuanhu Xiang. 2019. “Spa-

tial Misallocation: Evaluating Place-Based Policies Using a Natural Experiment in

China.” National Bureau of Economic Research, Inc NBER Working Papers 26148.
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Barbose, Näım Darghouth, Will Gorman, Seongeun Jeong, and Ben Pau-

los. 2022. “Land-Based Wind Market Report: 2022 Edition.” Office of Scientific and

Technical Information (OSTI) Report.

Wolsink, Maarten. 2000. “Wind power and the NIMBY-myth: institutional capacity

and the limited significance of public support.” Renewable Energy, 21(1): 49 – 64.

World Bank. 2022a. “Global Wind Atlas.” Dataset.

World Bank. 2022b. “Globl Solar Atlas.” Dataset.

44



Online Supplementary Appendix

Contents

A Project Costs and Benefits 2

A.1 Electricity production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

A.2 Market and Environmental Value of Electricity . . . . . . . . . . . . . . . 5

A.2.1 Wholesale Electricity Prices . . . . . . . . . . . . . . . . . . . . . 6

A.2.2 Carbon Emissions and Local Pollution Damages . . . . . . . . . . 8

A.2.3 Marginal Value Results . . . . . . . . . . . . . . . . . . . . . . . . 10

A.3 Capacity Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

A.4 Capital and Operating Costs . . . . . . . . . . . . . . . . . . . . . . . . . 14

A.5 Learning-by-doing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A.6 Costs to Local Residents . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.6.1 Project and property locations . . . . . . . . . . . . . . . . . . . . 18

A.6.2 Visibility analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.6.3 Empirical strategy for hedonic analysis . . . . . . . . . . . . . . . 19

A.6.4 Detailed Hedonic Regression Results . . . . . . . . . . . . . . . . 23

A.6.5 Assumed capitalization effects . . . . . . . . . . . . . . . . . . . . 23

A.6.6 Property values by post code . . . . . . . . . . . . . . . . . . . . 27

B Determinants of Planning Approvals 29

B.1 Threshold for National Significance . . . . . . . . . . . . . . . . . . . . . 29

B.2 Additional Regression Results . . . . . . . . . . . . . . . . . . . . . . . . 30

B.3 Local Opposition and Public Comments . . . . . . . . . . . . . . . . . . 35

C Misallocated Investment 38

D Transfer Payments to Local Residents 52

E Programming 54

1



A Project Costs and Benefits

Further detail on the estimation of project costs and benefits is provided here.

A.1 Electricity production

To estimate the capacity factors for solar projects I use estimates from Renewables Ninja

(Pfenninger and Staffell, 2016; Staffell and Pfenninger, 2016) and the World Bank Solar

Atlas (World Bank, 2022c,d). The former provides an hourly solar power production

profile for a representative solar installation in the UK from 1985 to 2016. The latter

provides monthly average solar power production estimates on a 1km spatial grid for

a representative solar installation. I use the coordinates of each project to extract the

nearest values from this grid. This provides a precise estimate of the seasonal variation in

solar output for each project. I then combine these monthly averages with the national

hourly profile to get a month-of-year by hour-of-day production profile that is specific to

each project. The combination of both monthly and hourly variation captures the key

seasonal and within-day variation in solar production.

For wind projects the capacity factor is much more heavily dictated by the kind of

turbine installed. To account for this I use customized data downloaded from Renewables

Ninja (Pfenninger and Staffell, 2016; Staffell and Pfenninger, 2016). Here a user can select

a set of location coordinates, a wind turbine model and height, and then a wind power

production profile is calculated over a set time period that accounts for both turbine

characteristics and site wind conditions.

For each wind project I first assign a plausible turbine model. In principle I have data

on the actual turbine make and model for most of the constructed project from The Wind

Power Turbine Database (The Wind Power, 2019). However, these data do not cover all

projects, and do not contain information on proposed projects that were ultimately not

completed. As such, to assign a plausible turbine model to each project I first directly

estimate both the turbine capacity (in MW) and the turbine power density (in MW per

m2 of blade swept area) using the data available in the planning database and for the

projects with data from The Wind Power. For each project I then find the closest turbine

model on these two metrics that is in the Renewables Ninja database and is consistent

with the time period when a given project was being proposed. I sense check my assigned

turbine model against actual models in The Wind Power dataset to ensure this approach

is reasonable.1

1The mean absolute difference between the turbine capacity of the assigned turbine make/model and
the actual turbine capacity is 2%, with the majority of projects getting the turbine capacity exactly right.
The mean absolute difference between the turbine power density of the assigned turbine make/model is
4%.
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Using the assumed turbine model and the location coordinates for each project, I

query the Renewables Ninja database and extract an hourly power production profile for

an entire year.2 I then collapse the annual hourly profile to month-of-year by hour-of-

day averages. As noted above, the combination of both monthly and hourly variation

captures the key seasonal and within-day variation in wind production. This also ensures

consistency with the approach taken to calculating solar capacity factors.

Finally, I check my estimated capacity factors by calculating average lifetime values

for each completed wind and solar project, and then calculating annual averages based on

the year in which projects were completed. I then compare these values to available data

on observed performance (BEIS, 2022a; IRENA, 2022). For solar projects the estimated

capacity factors generally have a very tight range around 10% and don’t experience much

of an increase over time. This matches observed trends well. For wind projects the es-

timated capacity factors show much greater dispersion and generally fall in the 30-50%

range. The higher level of dispersion is consistent with the fact that wind conditions,

project size and turbine type are highly heterogenous across projects. Offshore projects

also have higher average capacity factors than onshore ones which is as expected. How-

ever, the estimated capacity factors don’t exhibit the same level of growth over time

that is clear from observed trends, with a consistent pattern of over-estimation for earlier

projects. This is likely due to the Renewables Ninja platform used for estimation being

better suited for predicting for current projects than for past ones.

To remedy this I adjust the wind capacity factors to better account for these annual

trends. For onshore wind, I use annual average capacity factors for completed UK projects

from IRENA (IRENA, 2022). I calculate the capacity-weighted average lifetime capacity

factor for all completed projects in my sample in a given year. I then divide this by the

observed average value from IRENA for that year to get a ratio. I use this ratio to rescale

the estimated capacity factors for all proposed wind projects with an actual or expected

opening data in that year.3 For offshore wind I am able to take a more bespoke approach. I

gather project specific observed capacity factors based on operational output data (Smith,

2023).4 I then set the capacity factors for any offshore projects with observed data to

these exact values. For projects without observed data (either completed or proposed) I

replicate the approach used for onshore wind set out previously.5

2Given limitations on the frequency with which this database can be queried and the large number
of projects, I am only able to extract power profiles for the year 2014. To the extent this year was not
representative of wind conditions more generally, my findings may suffer from some bias. However, this
annual profile is summarized in such a way as to limit the impact of having chosen this particular year.

3To reduce the noise from year-to-year variation in this ratio value I use a five-year rolling average.
4I only collect values for projects with at least two years of operational data to avoid the capacity

factors being biased by the initial months when the project is incrementally brought online.
5Here I average the observed project specific values to get annual averages comparable to those

collected from IRENA. I then calculate ratios in the manner described, once again using the five-year
rolling average.
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The resulting month-of-year by hour-of-day capacity factors are shown in Figure A.1.

As expected, solar capacity factors peak in the middle of the day, and are also higher in

summer months than in winter. Wind capacity factors have a fairly flat profile over the

hours of the day, but are generally higher in the winter months than in the summer. It

is also clear from Figure A.1 that there is more heterogeneity in capacity factors across

wind projects than is the case for solar projects. This makes sense given the greater

variability in the turbines that can be installed and in wind conditions more generally.

Figure A.1: Estimated Hourly Capacity Factor Profiles

Notes: This figure shows the month-of-year by hour-of-day capacity factor profiles for all projects
in my sample. Each line refers to a project. The top panels are for solar projects and the bottom
panels are for wind projects.

Figure A.2 illustrates the variability in average capacity factors once aggregated up

to a single project specific lifetime value. Once again there is much more heterogeneity

in capacity factors across wind projects than solar projects. There is also a clear trend of

increasing capacity factors over time for wind projects, while the trend for solar projects

has been largely flat. There is also no clear pattern with regard to projects with higher

capacity factor being more likely to approved, as illustrated by the overlap between

approved (green) and refused (red) projects.
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Importantly, the wind capacity factors in Figure A.1 and A.2 include both onshore and

offshore wind projects, with capacity factors being seperately estimated for each project.

Offshore wind projects tend to have higher capacity factors - the median offshore wind

project in the sample has a capacity factor of 44% compared to 35% for onshore projects.

Offshore projects are also generally much larger - the median offshore wind project in the

sample has a capacity of 287MW compared to 11MW for onshore projects.

Figure A.2: Estimated Project Capacity Factors

Notes: This figure shows the estimated project capacity factors over time. Each point refers to a
project. Point sizes are determined by the capacity (in MW) of a project. Projects are classified by
their development status. “Pending” are projects that have submitted a planning application but
have yet to receive a final decision. “Approved” are projects that have been approved and are either
awaiting construction, under construction, operational or have been subsequently decommissioned.
“Refused” are projects that were refused planning permission or were otherwise withdrawn or halted.

A.2 Market and Environmental Value of Electricity

The social value of the electricity produced by a new wind or solar project is a combination

of both private and external factors. For the private value I rely on wholesale electricity

prices. For the external value I incorporate estimates of the reduction in carbon emissions

damages and local pollution damages. To do this I primarily rely on data from the

UK government’s guidance on cost benefit analysis and the valuation of climate change

policies (BEIS, 2020, 2021). I supplement this with a range of additional sources and

analyses in order to value projects over my full sample window (1990 to 2050) and to

capture within-year and even within-day variation in the value of renewable electricity

production. For each project, hourly and seasonal variation in their output is matched up
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with hourly and seasonal variation in the value of electricity production when computing

their full net present value.

A.2.1 Wholesale Electricity Prices

For the private value of renewable electricity production I start with the available UK

government guidance which includes annual values for wholesale electricity prices from

2001 to 2040 (BEIS, 2020, 2021). The prices from 2001 to 2020 are based on historical

average wholesale electricity prices. The values from 2020 to 2040 are based on the UK

government’s modeling of the future electricity grid.6

To extend the price data back to the start of my sample period I extrapolate using an

index of industrial electricity fuel prices going back to 1970 from the Digest of UK Energy

Statistics (BEIS, 2022a). I also directly collect hourly data on wholesale electricity prices

from Elexon, which I average to the annual level to give up-to-date observed data from

2004-2022 (Elexon, 2022). To extend the price data out to the end of my sample period

I use the forecast values from the guidance up until 2040. I then carry forward the 2040

values until 2050.

As well as varying from year-to-year, wholesale electricity prices also vary significantly

from month-to-month, day-to-day and even hour-to-hour. To the extent that this vari-

ation is correlated with the variation in output from a given wind or solar project, the

private value of the electricity being produced may differ from the annual average. There

is no available dataset that can provide historical or forecast values for hourly wholesale

prices from 1990 to 2050. To remedy this I use an econometric analysis to estimate plau-

sible values for hourly electricity prices over my entire sample period. To do this I take

the following steps.

First, I collect hourly data on wholesale electricity prices from Elexon from 2004 to

2022 (Elexon, 2022). I then calculate a price ratio variable that is the hourly electricity

price divided by the annual average. This price ratio variable will serve as the dependent

variable that I will aim to predict in all hours-of-sample from 1990 to 2050. It is unitless

and captures the scale of within-year fluctuations in electricity prices. I can then multiply

the annual average wholesale electricity prices (described above) by this estimated hourly

price ratio to get hourly estimated values for wholesale electricity prices.

Second, I construct a series of covariates that can a) help explain hourly variation

in price fluctuations, and b) be observed or estimated over the full sample period. The

covariates include dummy variables for each hour-of-day, day-of-week, day-of-month and

month-of-year. I then construct two further variables based on the level of electricity

6This modeling includes forecasting fuel prices, demand and investment in new capacity, and then
running a dispatch model to solve for clearing market prices.
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demand and composition of electricity production in a given hour. I seperately estimate

both of these things, and the approach taken to do this is described in the next section on

external values. The first variable I construct is the “peak load share”. This is the hourly

electricity demand in a given hour divided by the peak hourly demand for that year. The

purpose is to produce a variable bounded 0 to 1 that reflects whether a given hour is a

high demand period where prices tend to be higher, or low demand period where prices

tend to be lower. The second variable I construct is the “baseload generation share”.

This is the hourly electricity production from baseload inflexible or intermittent sources

in a given hour divided by hourly electricity demand in that hour. Again the resulting

variable is bounded 0 to 1. Baseload inflexible or intermittent sources are taken to be

wind, solar, hydro, tidal and nuclear. All of these have low marginal costs of production,

so when they make up a large proportion of total generation the will tend to shift out

the supply curve, reducing the amount of more expensive flexible generation that needs

to operate, and thus reducing prices.

Third, I fit a model that can simulate wholesale electricity prices over the entire

sample period. The dependent variable is the price ratio. The independent variables are

the various time dummies, the “peak load share” and the “baseload generation share”.

This is simply a prediction exercise and one in which the functional form with which the

various covariates enter is unclear. As such I use a random forest algorithm to fit the

model. This achieves an out-of-sample R-squared of 0.41. Given the limitations on the

covariates that can be included and the extent of underlying price variation this seems

to be an acceptable level of model performance.

Fourth, I use the fitted model to make predictions for the price ratio in each hour of

the full 1990 to 2050 sample. I then multiply these price ratios by the annual average

electricity price to get simulated hourly values for wholesale electricity prices spanning

my entire sample period. In my final analysis I use the observed historical prices for the

2004 to 2022 period and the simulated prices for pre-2004 and post-2022.

A final factor to account for is spatial variation in the private value of electricity. To

date the UK has not had locational marginal pricing. Instead there is a single national

price, and then congestion is resolved via a secondary redispatch market. To account for

spatial variation in the private value of electricity output and approximate the effects

of the redispatch market I use modelling results produced for the UK energy regulator,

Ofgem, as part of their assessment of the impact of moving to nodal locational marginal

pricing (Ofgem, 2022). I use the figures provided in their report to approximate how

much average wholesale prices in each region differ from the national average in a given

year.7 I then adjust the private value of electricity production for each project by the

7Their report is forward looking so provides projected price levels nationally and by region in 2025,
2030, 2035 and 2040. I assume the 2025 spatial relationship holds back to 1990 and the 2040 spatial
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relevant scaling factor depending on the region in which a project is located. Visually it

is clear that the adjustments lead to projects further north earning lower wholesale prices

than average while projects further south earn higher wholesale prices than average. For

example, the average wholesale price in Scotland in 2025 is assumed to be around 63% of

the national average while further south in England & Wales it is 106% of the national

average.

A.2.2 Carbon Emissions and Local Pollution Damages

For the external value of renewable electricity production I start with the available UK

government guidance on the value of avoided carbon emissions and local pollution (BEIS,

2020, 2021). For marginal abated carbon emissions the guidance provides an annual series

of carbon prices from 2010 to 2100.8 I use the non-traded values which are £73/tCO2

in 2020 and increase steadily over time at approximately 2% per year.9 I therefore

extrapolate the values backwards from 2010 to 1990 assuming the same growth rate.

For local pollution the values of avoided local pollution damages are taken from UK

government guidance (BEIS, 2020, 2021). These are £8,152/ton for SO2, £5,487/ton for

PM2.5, £3,616/ton for PM10, and £2,272/ton for NOX.
10. The assumptions for the local

pollutants are underpinned by UK government modelling of air pollution transport and

damages. For all air pollutants I use the baseline national damage assumptions. These

are calculated using an impact pathways modelling approach that accounts for the spatial

distribution of pollutant emissions from existing sources, and how such a reduction affects

exposed populations after accounting for pollution dispersion and population density.11

For PM2.5 and NOX more detailed assumptions are available beyond a single national

value in order to better reflect the pollution exposure of specific sectors and emission

types. I use the damage values that are most approriate for large power plants with tall

relationship holds out to 2050.
8The guidance includes high, low and central values for carbon prices. I use the central values and

then examine the high and low values in sensitivity analyses.
9Values here are in real 2021 prices. I do not use the traded values here as they are based on the EU

Emissions Trading Scheme which had a number of idiosyncratic reasons why prices were very depressed
in the early years existence. Furthermore, the traded values are assumed to converge to the non-traded
ones by 2030 anyway. Because the goal here is to capture the true social value of reducing carbon
emissions the non-traded ones are deemed to be more appropriate for this purpose.

10My analysis relies on the 2019 guidance and all the values cited are given in real 2021 prices for the
year 2020. The guidance includes high, low and central values for carbon prices. I use the central values
and then examine the high and low values in sensitivity analyses.

11The time period of projects studied spans over three decades while UK government modelling
necessarily reflects the current distribution of emissions sources and population densities. I follow the
government guidance in simply extrapolating current £/ton damage values forwards to 2050 when valuing
new renewable energy projects, so does not seek to account for changing patterns of population exposure
over time. This doesn’t seem entirely unreasonable as existing emissions sources and populations are
likely to highly correlated over time, even over many decades.
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chimney stack heights.12 So in this context, the damage assumptions should account for

spatial variation in local pollution damages from the power grid in an aggregate sense,

although this marginal damage is assumed to be the same for all wind and solar projects

at a given point in time, irrespective of their own location.

To convert these damages in £/ton of pollutant into £/MWh of electricity requires

data on the emissions intensity of electricity production in tons/MWh. The guidance

does provide some values for carbon emissions intensity, although these do not include

short-run marginal values or information pre-2010. Local pollution emissions intensities

are not provided. As such I estimate emissions intensities directly.

To estimate marginal emissions intensities I gather annual data on historical emissions

by pollutant and source type from the UK National Atmospheric Emissions Inventory

(DEFRA, 2022) and historical electricity production by source type from the Digest of

UK Energy Statistics (BEIS, 2022a). Dividing source-level emissions by source-level elec-

tricity production yields an annual emissions rate by source type. Averaging across all

source types, weighted by their respective annual generation, yields an annual average

emissions rate. Here I exclude baseload sources of electricity generation from this calcu-

lation (i.e. nuclear, wind, solar, hydro and tidal) and assume only flexible sources (i.e.

coal, oil, gas, other thermal, storage and interconnectors) are “on-the-margin” such that

they can be displaced by additional wind and solar output.13 I find that the emissions

intensity has fallen significantly over time across all pollutants, especially sulphur dioxide

and particulate matter which are strongly tied to the presence of coal generation.

As well as varying from year-to-year, the emissions intensity of electricity also varies

significantly from month-to-month, day-to-day and even hour-to-hour. To the extent

that this variation is correlated with the variation in output from a given wind or solar

project, the external value of the electricity being produced may differ from the annual

average. Similar to the approach taken for wholesale electricity prices, I use an econo-

metric approach to estimate plausible values for hourly electricity demand and electricity

generation by source over my entire sample period, which I then use to calculate hourly

emissions intensities. To do this I take the following steps.

First, I collect hourly data on electricity demand and electricity generation by source

type from National Grid from 2009 to 2022 (NGESO, 2022).

12These are taken to fall under part A Category 9 in the guidance, which refers to large industrial
emitters with chimney heights greater than 100m and a population density in the surrounding 31km
radius in excess of 1000 people per square km. Most coal and natural gas plants in the UK are located
in industrial regions relatively close to large urban centers which is consistent with this level of exposure.

13Storage and interconnector imports are assumed to have emissions factors of zero. Using the
marginal emissions rate instead of the average described earlier does not substantively change the anal-
ysis. The marginal rate is consistently above the average rate but the two are generally quite close and
tend to be highly correlated.
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Second, I construct a series of covariates that can a) help explain hourly variation in

demand or generation, and b) be observed or estimated over the full sample period. The

covariates include dummy variables for each hour-of-day, day-of-week, day-of-month and

month-of-year.

Third, I fit a simple regression model that can identify the key features of within-year

variation in demand and generation. The dependent variable is electricity demand or

electricity generation from each of the source types. The independent variables are the

various time dummies. Given the absence of more complex covariates I determine the

functional form for the model and estimate via ordinary least squares.14

Fourth, I use the fitted model to make predictions for electricity demand and electricity

generation by source type in each hour of the full 1990 to 2050 sample. I rescale all values

to ensure they match the annual totals for demand and generation already compiled

by proportionally adjusting the generation totals in each hour to match the simulated

demand in that hour.15 I multiply each generation source by its annual emissions rate to

calculate hourly estimates of emissions intensities.

Lastly, I now combine my estimates of the hourly emissions intensities with the

marginal damage values to calculate hourly values for the avoided carbon and local pollu-

tion damages in £/MWh for my entire sample period. In my final analysis I use observed

hourly data to calculate emissions intensities for the 2009 to 2022 period and the simu-

lated hourly data to calculate emissions intensities for pre-2009 and post-2022.

A.2.3 Marginal Value Results

The resulting marginal values per MWh of electricity produced are shown in Figure A.3.

These monthly averages convey both the long-term trends and the seasonal fluctuations

in both private and external benefits from new wind and solar output. The shaded

range also indicates the bounds created by the low and high sensitivities. These are the

most pronounced for local pollution damages in the early years of the sample where coal

generation played a larger role in UK electricity supply.

To better illustrate the underlying hourly variation, Figure A.4 shows the simulated

hourly private and external value over the first week of April in 2005, 2025 and 2045. The

corresponding simulated hourly generation mix is also shown below. The results highlight

14My regression includes month-of-year by day-of-month by hour-of-day effects to capture the core
seasonal and within-day patterns, and then day-of-week by hour-of-day effects to capture the week-
day/weekend variability.

15To do this I first proportionally adjust the flexible sources of generation. In the event that this is
unable to reconcile aggregate generation and demand (e.g. where there is a surplus of baseload genera-
tion) I then proportionally adjust baseload sources of generation as well. In general these adjustments
are fairly small. In 90% of hours the total simulated generation is between 82% and 106% of the total
demand
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Figure A.3: Marginal Market and Non-Market Values of Renewable Electricity
Production

Notes: This figure shows the changing marginal value of renewable electricity production over
time. “Market Price” refers to the private value of the electricity produced as captured by wholesale
electricity prices. “Carbon Emission Damages” refers to the external value of the CO2 emissions
abated by displacing generation from other sources. “Air Pollution Damages” refers to the external
value of the local pollution emissions abated by displacing generation from other sources. The lines
are based on historical data and the UK government’s central scenario values, while the shaded areas
are bounded by the low and high scenario values.
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that a number of important trends are incorporated. First, the long-term decline in coal

generation leads to the effective erosion of most air pollution damages in the second half

of the sample period. Within-day fluctuations in demand from night to day are met with

corresponding fluctuations in flexible generation. This increases both prices and external

damages in certain hours. The growing penetration of renewable sources lowers emissions

intensities over time and in certain hours. The relatively flat within-day profile of wind

output also stands in contrast with the regular daytime peaks of solar output. Lastly,

within-week variation is also present, with lower demand on weekends translating into

lower prices.

Of course, simulating hourly variability in demand, generation and prices over such a

long time period still has some limitations. For instance, shifts in demand that were not

observed pre-2022 will be challenging to capture, such as the uptake of electric vehicles

and heat pumps. Similarly a growing prevelence of household solar and storage, or

changes in the way existing generation assets operate, will also be missing. Nevertheless,

the approach taken here is likely sufficient to ensure much of the hourly variability in

the value of new wind and solar production is accounted for, particularly relative to the

available alternatives and a baseline approach of using annual averages.

A.3 Capacity Value

Further detail and figures on the estimation of capacity value is provided here. For

intermittent power sources like wind or solar the capacity value is generally thought of in

relative terms by starting with the capacity value of a conventional dispatchable generator

(e.g. a gas-fired power plant) and then calculating “the proportion of installed renewable

capacity that is able to ‘displace’ conventional generation or support extra demand while

maintaining system reliability levels” (Harrison et al., 2015). Statistical modelling for the

UK indicates that at present a wind project can expect around 10-20% of its capacity

to provide this kind of reliable “firm” supply, while for solar the equivalent number is as

low as 1%. These percentages are sometimes referred to as “equivalent firm capacity”

de-rating factors. The values for the UK reflect the fact that peak demand periods in the

UK occur on winter evenings, and so while there is a decent probability the wind will be

blowing at this point, the sun will almost certainly have set.

My starting point for calculating capacity value is National Grid’s guidance on the

de-rating factors they use for the UK capacity market auctions. For the auctions in 2020

they settled on de-rating factors of roughly 8.5% for onshore wind, 13% for offshore wind,

and 1.5% for solar. These values can and will change over time - they will fall as the

generation share of wind or solar increases, and rise as demand shifts towards periods

when the wind is usually blowing or the sun is shining. This is particularly important to
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Figure A.4: Illustration of Simulated Hourly Electricity Production and Marginal Value

(a) Marginal Value of Electricity Output

(b) Generation by Source Type

Notes: The top panel of figure shows the simulated hourly private and external value of electricity
production over the first week of April in 2005, 2025 and 2045. The solid line is the observed historical
data or the central scenario value. The shaded band is bounded by the high and low sensitivities.
The bottom panel shows the corresponding simulated hourly generation mix (colored bars) and total
load (black line).
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capture for wind power because this is expected to provide such a large portion of the

UK’s electricity supply by 2050.

To capture the change in de-rating factors for wind projects over time I therefore rely

on estimates by (Harrison et al., 2015).16 Their analysis examines how de-rating factors

for onshore and offshore wind vary as the total wind power capacity in the UK increases.

I converted this to points in time using information on the past and forecast growth of

wind capacity from National Grid. Based on this, onshore wind de-rating factors were

around 20% in 1990, but have fallen to 9% today, and will likely reach 7% by 2050.

Offshore wind de-rating factors were likely as high as 35% in 1990, but have fallen to 15%

today, and will likely be as low as 9% by 2050. I assume solar de-rating factors remain

at 1.5% across the entire period.

To get the capacity value of each wind or solar project I multiply the relevant “equiv-

alent firm capacity” de-rating factor by the capacity of each project and then value the

remaining “firm” capacity based on the UK government’s capacity market guidance. The

result is a capacity value for each project in £/MW/year. In practice the capacity value

estimates are very small. Furthermore, because they only vary annually for each tech-

nology type they do not end up meaningfully driving any subsequent results which are

conducted using variation that is within-technology and within-year.

A.4 Capital and Operating Costs

Further detail and figures on the estimation of capital and operating costs is provided

here. Capital and operating costs are primarily taken from the International Renewable

Energy Agency’s report on Renewable Energy Costs (IRENA, 2022). These data provide

annual average capital costs by technology type and country based on a sample of actual

completed projects. The UK values therefore capture key trends in costs over time.

Additional data on capital costs by project size are taken from the Lawrence Berkeley

National Laboratory (Wiser et al., 2022; Bolinger et al., 2022; Barbose et al., 2022).17

These help capture economies-of-scale by reflecting the difference in unit capital costs

between small and large projects at a given point in time. Unit capital costs differ within

a given year according to different project size bands, where costs are normalised relative

to the 50-100MW size band. Relative unit capital costs for wind projects are: 1-5MW

= 1.46, 5-20MW = 1.09, 20-50MW = 1.03, 50-100MW = 1, 100-200MW = 0.99 and

200+MW = 0.92. For solar projects the size bands are: 1-2MW = 1.32, 2-3MW = 1.31,

16Namely those shown in Figure 11 in their paper.
17For any wind projects and for larger solar projects (>5MW) these values are taken from the utility-

scale reports on each of these technologies. For smaller solar projects (<5MW) the equivalent cost
changes by size are based on project-level data published as part of the seperate distributed solar report.
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3-4MW = 1.15, 4-5MW = 1.12, 5-20MW = 1.16, 20-50MW = 1.11, 50-100MW = 1

and 100+MW = 1.13. This highlights the benefits of concentrating capacity at larger

projects, especially for wind power.

Operating costs are also primarily taken from the International Renewable Energy

Agency’s report on Renewable Energy Costs (IRENA, 2022). Here again the data provide

annual average operating costs by technology based on a sample of actual completed

projects. UK specific data is not consistently available and so for onshore wind I use

US values while for solar I use the values for projects in developed countries (IRENA,

2022).18

Additional data on operating costs by location are calculated using transmission sys-

tem charging data from National Grid (NGET, 2022). Because the charging arrangements

are complex and have changed over time, I focus on the largest component of the tar-

iff paid by generators that also varies consistently geographically: the “wider tariff”. I

collect data on these tariffs going back to 2005 and forecast out to 2025.19 To construct

consistent estimates spanning the time period of my analysis I average the different lo-

cation categories up to 11 regions. These match the UK Government Office Regions and

can be easily merged with the project-level data.20 Despite this aggregation, some of the

key grid transmission constraints are still captured, especially the transfer of power from

Scotland south into England. Where appropriate, all values were converted to real 2021

UK pounds using exchange rates and inflation index data from the World Bank (World

Bank, 2022b,a).

The estimates for capital costs and operating costs are shown in Figure A.5. Key

trends are clearly visible, with the long-term decline in costs most evident. The level

shift in capital costs for some projects within a given technology type reflects the extent

to which they fall into different size categories, and thus benefit from economies of scale.

The level shift in operating costs for some projects within a given technology type reflects

the extent to which they are located in areas with high grid transmission costs.

The initial increase in offshore wind costs, followed by a later decline, reflects the

fact that early projects were relatively small and close to shore, but that later projects

eventually reached a certain scale that cost declines also started to emerge. This mirrors

trends in offshore costs seen globally, with additional outliers driven by experimental

projects such as deep water and floating turbines. Offshore wind operating costs are

assumed to be twice that of onshore projects. This is consistent with the higher costs of

18Note that IRENA assumes onshore wind operating costs for the UK in 2021 of $37,000/MW/yr
which is basically identical to the $38,000/MW/yr value they assume foir the US.

19Where the analysis requires values for years outside this range I simply extrapolate the nearest value
forwards and backwards in time.

20In this instance the regions are South West, South East, London, East of England, East Midlands,
West Midlands, Wales, North West, Yorkshire and The Humber, North East and Scotland.
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servicing turbines at sea and is in keeping with UK government estimates of the relative

costs of operating these projects.21

Figure A.5: Estimated Project Capital and Operating Costs by Year

(a) Capital costs

(b) Operating costs

Notes: This figure shows the estimated costs over time. Each point represents the total amount of
proposed capacity of a given technology type at a given cost level. Capital costs are at the top and
operating costs are at the bottom. Panels refer to three different technology types: solar, onshore
wind and offshore wind.

21UK government estimates of offshore wind operating costs for projects built between 2018 and 2025
are between 1.8 and 2.9 times those of onshore wind projects, with an average ratio of 2.2 times (BEIS,
2023).
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A.5 Learning-by-doing

Further detail and figures on the estimation of learning-by-doing benefits is provided

here. To try and capture some of the uncertainty in this particular impact I create “low”,

“medium” and “high” sensitivities. To do this I use the range of scenario assumptions

set out by Newbery (2018) in Table 1. In particular, the “low”, “medium” and “high”

sensitivities for solar projects were taken from columns F, C and B respectively, and for

wind projects from K, J, and I respectively. In all cases the optimal subsidy is scaled

based on the average global installed capital cost for wind and solar projects in 2015,

using data from IRENA. The resulting values can be seen in Figure A.6.

Figure A.6: Learning-by-doing Benefits from a New Wind or Solar Project by Year

Notes: This figure shows the changing learning-by-doing gains from installing a new wind or solar
project in a given year over the sample period. These values were estimated based on the methodology
developed by Newbery (2018). “Low”, “medium” and “high” sensitivities are shown by the different
dashed lines.
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A.6 Costs to Local Residents

A.6.1 Project and property locations

The first step in the analysis of the impact of wind and solar projects on nearby residents

is determining the location of each project and each property. For property locations I

use data from the Office for National Statistics (ONS) on the centroid of each post code

(Office for National Statistics, 2022d). Post codes are a very granular geographic measure

in the UK context, with each post code representing around 15 properties.

For project locations I use the centroid of each project. This information is provided

directly in the Renewable Energy Planning Database (BEIS, 2022b). Where possible I

check these locations against more detailed spatial information available from Open Street

Map (OpenStreetMap, 2022). In the limited number of cases where the coordinate was

missing, or appeared erroneous, the project was dropped. All spatial data was converted

to the Ordanance Survey National Grid reference system. The footprint of each project

(e.g. the area covered by solar panels or the location of individual wind turbines) is taken

directly from OSM where available. Where this information is not available solar projects

are assumed to require 6 acres per MW (Ong et al., 2013) and wind projects are assumed

to require the square of seven times the rotor diameter for each turbine installed.

A.6.2 Visibility analysis

To isolate the visual impacts of wind and solar projects I conduct a geospatial analysis

to determine whether properties are likely to have direct line-of-sight to a project. In ad-

dition to specifying coordinates in the east-west and north-south directions, determining

line-of-sight also requires specifying an elevation for each point. Elevation was calculated

using a GB Digital Elevation Model (Blackwood, 2017). The default is to then use the

ground-level elevation from the digital elevation model. No person standing by their

property is realistically looking out at ground level, and so I assumed that the coordinate

for each post code should be set at head height, around 1.6m off the ground.

For the wind and solar projects what matters is the visibility of the structures being

installed (i.e., wind turbines or solar panels). For solar projects this is relatively trivial

because panels are very homogenous and usually installed in very similar ways. As such

I assume that the top of the solar panels are located at 3m off the ground.

For wind projects the height of the turbines is far more heterogenous, particularly as

turbines have increased substantially in size over time. The planning dataset also does

not include information on wind turbine tip heights. Fortunately it is possible to calculate

the average capacity of the turbines installed by dividing the total capacity by the number
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of turbines. Turbine capacity has a fairly stable relationship to turbine size. I use data

on thousands of different turbine models in The Wind Power Turbine Database to fit

a simple regression model that traces out the effectively quadratic relationship between

turbine capacity and turbine height (The Wind Power, 2019). I then apply this to the

information on turbine capacity in the project database. The resulting turbine tip heights

range from around 50m to in excess of 200m. This is the height off the ground that I use

for the project locations.

Finally, I conduct a direct line-of-sight analysis using the digital elevation model and

each project-post code pair within a 10km radius. For this I use the “intervisibility”

algorithm in QGIS (QGIS Development Team, 2022; Cuckovic, 2016). As well as calcu-

lating a binary indicator of whether there is direct line-of-sight between two points, it

is also possible to use the “depth-below-horizon” algorithm to calculate what portion of

the target structure is visible. So, if the top 40m of a 100m wind turbine is visible then I

calculate a visibility metric of 0.4. Ultimately I convert this to a binary indicator which

takes the value one if any of the project is visible. The results do not appear particularly

sensitive to the use of alternative cutoffs.

An illustration of this analysis can be seen in Figure A.7. This figure shows a map

of the area surrounding the Caton Moor Wind Farm, denoted by the red polygon in

the center. The red/blue points denote the post codes where properties are located.

Postcodes in blue have no direct line-of-sight to the project. Postcodes in red have full

direct line-of-sight to the project. Postcodes with colors in between have some partial

line-of-sight (e.g. the tip of the turbine blades might be visible, while much of the base

of the turbine is obscured).

A.6.3 Empirical strategy for hedonic analysis

Renewable energy projects create a number of local economic impacts. Of primary in-

terest here are the various visual and noise disameneties associated with these projects.

Credibly estimating these impacts is challenging. Here I employ a hedonic approach to

look at changes to property values caused by wind and solar projects (Bishop et al., 2020).

I focus on capitalization into residential property values as this likely captures a large

portion of the local impacts of interest. Wind and solar projects have been shown to

have minimal persistent impacts on local employment (Costa and Veiga, 2019). Projects

do generate rents for landowners, and prior research has found positive capitalization of

wind energy subsidies into agricultural land values (Haan and Simmler, 2018). Unfortu-

nately I lack the necessary data on land values to study this directly, although given the

concentration of landholdings this is likely to only affect a very small number of local

individuals. The impact of a project on local tax revenues is likely minimal in the UK
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Figure A.7: Illustration of Postcode to Project Visibility

Notes: This figure shows the visibility of a wind project from different post codes within a 5km
radius. The red polygon in the centre is the Caton Moor Wind Farm in north west England. The
red and blue points are post codes. Blue points do not have direct line-of-sight. Red points do
have direct line-of-sight. The background image is taken from Open Street Map and includes some
shading to convey elevation.
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because business rates and corporation tax have historically gone into the central gov-

ernment budget. Still, there may be other local impacts that my analysis fails to capture

which should be kept in mind when considering the analysis set out here.

Residential property transactions data is from Her Majesty’s Land Registry and covers

virtually all sales of residential properties in England & Wales since 1995 (Her Majesty’s

Land Registry, 2022b). Each transaction includes a unique identifier for a given property,

as well as the date of the sale and the post code location of the property. For the

regression analysis I collapse the data to post code annual averages to facilitate the

estimation method used later. In practice there is rarely more than one transaction in a

given post code each year so the post-code-by-year dataset is very similar in structure to

the original transaction data.

Throughout this analysis I employ a quasi-experimental difference-in-difference ap-

proach. This hinges on comparing changes in property values for locations that have a

new renewable energy project constructed nearby to changes in property values for other

similar locations that do not have a new renewable energy project constructed nearby.

My preferred specification is an event study of the form:

log(Pit) =

Spost∑

s=Spre

D∑

d=1

C∑

c=1

βd,c,sTit + γXit + θt + λi + ϵit (1)

Here P is the transaction price of properties in post code location, i, in year, t.

Treatment, T , is determined by the distance to a project, the project size in capacity,

and whether a project has come online yet. For distances I use three bins (D = 3) of

0-2km, 2-4km and 4-6km. For capacity I use two bins (C = 2) of 1-10MW and 10+MW.

Prior studies in this area have generally conducted a simple difference-in-difference

analysis with a single post-period dummy variable. Unfortunately this makes it challeng-

ing to see how the estimated effects evolve over time, or to provide any reassurance that

the parallel trends assumption is likely to hold. Here I improve on prior work by estimat-

ing an event study with a set of dummy variables indicating whether a given observation

is s years before (pre) or after (post) the year when a project became operational. I

include ten years of pre-periods (Spre = −10) and five years of post-periods (Spost = 5).22

Unless otherwise specified the treatment effect coefficients, β, capture the percent change

in property values from a new project of capacity c being completed in distance bin d.

In all regressions I limit the sample to properties in locations that are ever within

6km of a project by the end of the period. I focus on properties that are ever near to a

22In the basic two-way fixed effects model the first pre-period dummy and the last post-period dummy
capture any observations that are more than ten years before or more than five years after a project
becomes operational.
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single project to avoid issues of properties being treated multiple times. I also drop any

projects from my sample that do not have observations at least ten years prior and five

years after their start date. Given my property value data spans 1995 to 2022 this means

my sample of projects includes those built between 2005 and 2017. This period is when

the large majority of wind and solar capacity in the UK was completed.

To account for unobservable determinants of property values I use a rich set of location

fixed effects, λi, at the post code level, and time fixed effects, θt, at the year-of-sample

level. To capture observable determinants of property values a limited set of additional

controls, X, can be included, such as whether a sale is for a new home. These do not

appear to affect the results and so the preferred results do not include these controls.

Standard errors are clustered at the post code level.

The hedonic analysis conducted here improves on prior studies in important ways.

Numerous studies have shown that difference-in-difference estimates can be biased when

there is variation in treatment timing (Goodman-Bacon, 2018; Borusyak and Jaravel,

2017; Callaway and Sant’Anna, 2019). Here I estimate my effects using the approach

developed by Callaway and Sant’Anna (2019) to tackle this problem. This paper is

therefore the first paper using hedonic methods to quantify the local impacts of renewable

energy projects that has accounted for this potential source of bias. It appears from

comparing the new estimates with those from a standard two-way fixed effects model

that this source of bias is potentially substantial in this context. This makes sense given

the extent to which treatment effects are heterogenous and that deployment of projects

rolled out over many years.

One challenge created by this new approach is that currently it is only able to handle

a simple binary treatment. As such it cannot use continuous treatments or interaction

terms to capture important margins of heterogeneity that play a key role in the effects

of interest, such as distance and project size. As such I split my sample and estimate

seperate regressions by distance and capacity bin. In doing so I also take the novel step of

using data on the projects that were proposed but not completed to construct the control

group. The method developed by Callaway and Sant’Anna (2019) requires the definition

of a “never treated” group. Here I am able to use proposed but unsuccessful projects in

the same distance and capacity bin to form the “never treated” group.

Finally, I examine a key source of heterogeneity in my analysis: the line-of-sight

visibility of a project. The visual impact of wind and solar projects is consistently cited

as a key reason that projects are refused planning permission. Prior work has also found

that negative impacts on local property values are primarily due to visual disamenity

(Gibbons, 2015; Sunak and Madlener, 2016). To examine this I conduct a geospatial

analysis to determine whether a property has direct line-of-sight to a project, as set out
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earlier. I then conduct my analysis seperately for visible and non-visible projects.

A.6.4 Detailed Hedonic Regression Results

Figure A.8 provides additional detail on the results presented in the main text. The

clearest evidence of an impact on property values still arises for properties within 4km

of a directly visible wind project, particularly a larger wind project of 10+MW. In these

cases there is a sudden negative jump at the year of project completion that deviates

from the prior flat pre-period trend, with an effect size on the order of 8-10%. There is

also some potential evidence of a small effect in the 4-6km distance bin, and for smaller

projects in the 1-10MW capacity bin, although these are not quite as conclusive. There

is no clear evidence of an effect for visible solar projects of any size in any distance bin.

The results for non-visible projects are also shown here. They are generally noisier,

especially for wind projects where there are very few properties without direct line-of-

sight at the closest distances. For both wind and solar projects there is consistently a

lack of clear evidence of an effect, although given the size of confidence interval it is

hard to rule out small effects. There are potential exceptions with statistically significant

non-zero coefficients arising for larger wind and solar projects in the 4-6km distance bin.

However, these effects don’t really make intuitive sense given those observed at closer

distances, and they do not feature the same jump at the treatment year seen in the

effects for visible wind projects. As such these are more likely due to pre-existing trends

or deficiencies in the estimation process.

To check for possible sorting I repeat my regression analysis but this time the de-

pendent variable is the number of sales per postcode-year. I make sure to expand the

dataset to include zero values for postcode-years where there are no sales. Figure A.9

shows that across both wind and solar projects and various margins of heterogeneity I

find no consistent evidence of a change in the frequency with which properties are sold.

A.6.5 Assumed capitalization effects

After conducting the hedonic analysis I use my estimated effects to inform the subsequent

calculation of the local property value impacts of each project. The effects I estimate are

informative of the general scale of the capitalization effects, but given the limitations of

the econometric approach they remain fairly coarse in the way they capture heterogeneity.

For instance, it doesn’t seem plausible that at a threshold of 10MW there is a sudden

change in these effects or that all projects greater than 10MW have the same impact at

a given distance.

I therefore pick a set of capitalization effects, β, that produces a reasonable range
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Figure A.8: Estimated Capitalization of Wind and Solar Projects into Nearby Property
Values

Notes: This figure shows the estimated capitalization effects of new wind and solar projects on
nearby property values. The left panels are for solar projects and the right panels are for wind
projects, with subpanels by capacity bin. The top panel shows visible projects and the bottom panel
shows non-visible projects, with subpanels by distance bin.
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Figure A.9: Estimated Effect of Wind and Solar Projects on Frequency of Property
Transactions

Notes: This figure shows the estimated effects of new wind and solar projects on the frequency
of property transactions. The left panels are for solar projects and the right panels are for wind
projects, with subpanels by capacity bin. The top panel shows visible projects and the bottom panel
shows non-visible projects, with subpanels by distance bin.
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of property value impacts that can approximate the hedonic estimates I find, and those

found in the wider literature (Gibbons, 2015; Jensen et al., 2018; Dröes and Koster, 2020;

Gaur and Lang, 2020; Parsons and Heintzelman, 2022). Here I assume a log relationship

between project capacity and the effect size, consistent with prior work (Jensen et al.,

2018). This conveniently produces a smooth increase that lends itself to the kind of

extrapolation exercise envisaged here. It also captures the fact that the first few turbines

installed are likely to be quite costly, but that there is a diminishing marginal impact

as the extent of deployment increases. In using a log relationship I also make a slight

adjustment to ensure the smallest projects have sensible effects. The resulting approach

is set out below.

∆P = β × (1 + log(capacity)) (2)

In my central scenario, properties within 5km of a wind project with direct visibility

have β values of -0.02, -0.0175, -0.015, -0.01 and -0.005 at distances of 0-1km, 1-2km,

2-3km, 3-4km and 4-5km respectively. See Figure A.10 for an illustration of how these

assumptions translate into property value changes.

Figure A.10: Illustration of Assumed Capitalization Effects by Project Capacity

Notes: This figure plots the assumed property value impacts as a function of increasing project
capacity. Colors represent different effects by distance of the property from the project. The left,
middle and right panel refer to the “Low”, “Central” and “High” scenarios.
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A.6.6 Property values by post code

Calculating the local external costs requires understanding the value of any properties

located near the various projects in the sample.

To estimate the number of properties in each post code I use data on property counts

at the local authority level from the Valuation Office Agency and the National Registers

of Scotland (Valuation Office Agency, 2021; National Registers of Scotland, 2021). I then

use census data on population by post code to proportionally allocate the local authority

totals to each post code (Office for National Statistics, 2011).

To estimate the average price of properties in each post code I start with data on

annual average prices at the local authority level and downscale to each post code (Her

Majesty’s Land Registry, 2022a). To do this I fit a predictive model and then use the

outputs to estimate post code level averages that are consistent with the known local

authority averages.

First I take the property transaction data for England and Wales going back to 1995

that was used in the earlier hedonic analysis (Her Majesty’s Land Registry, 2022b). This

includes the price, P , of property, i, in year, t and post code, p, of the property being

sold for around 25 million property transactions. I can also match each post code to each

local authority, a.

I then divide all post code-level transaction prices, Pipt, by the local authority average

in the year the transaction took place, Pat. This “post code price ratio”, Rip, effectively

removes annual time series variation from the data and produces a measure of how much

higher or lower a transaction price is for a given post code relative to the local authority

average. This is the outcome variable used in the predictive model.

Next I download and merge a range of other variables, Xp, that are likely to be cor-

related with prices while also being consistently available at the post code level. This

includes measures of whether a post code is rural or urban, index scores of social depriva-

tion and census data on the socioeconomic status of residents (Consumer Data Research

Centre, 2013; Office for National Statistics, 2011; Abel, Payne and Barclay, 2016). Many

of these measures are only available for a single year and so this means the relation-

ships I fit will provide a static picture of how much more or less expensive properties are

in a given post code relative to the local authority average. This means my predictions

will not be able to capture spatial variation within-local-authority that changes over time.

However, this approach is still likely to capture the bulk of the spatial variation of interest

by distinguishing between typically rich and poor areas.

I then fit a machine learning model of my “post code price ratio” outcome variable,

Rip, on the range of post code-level covariates, Xp. For this I use the random forest
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algorithm.23

Pipt

Pat

= Rip = f(Xp) (3)

The model achieves an out-of-sample R-squared of 0.57. The relative importance of

different covariates to the overall predictive power of the model can be seen in Figure

A.11. The most important covariates are those associated with the prevelance of different

types of occupation and aggregated scores of deprivation. The least important covariates

are those capturing differences between urban and rural areas.

Figure A.11: Postcode Price Ratio Predictive Model Importance Scores

Notes: This figure shows the importance scores for the covariates included in the model used to
predict the post code price ratio.

Lastly, I use the model to make predictions of the “post code price ratio” for every post

code in my sample, including those in Scotland which were not in the original transaction

dataset. I then calculate the predicted post code-level price in a given year by rescaling

the local authority average price using the predicted “post code price ratio”.

Ppt = Pat ×
R̂p

R̂a

(4)

The result is a consistent panel of average property prices for every post code in each

year of the sample.

23Fit using the “ranger” package with num.trees = 200 and mtry = 4.
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B Determinants of Planning Approvals

In the analysis examining the determinants of project approvals the primary dataset being

directly studied is the Renewable Energy Planning Database (BEIS, 2022b). Where not

already provided in the data, projects were assigned to a relevant local authority and local

planning authority based on the closest relevant polygon (Office for National Statistics,

2022a,b). The distance from each project to the nearest National Park was calculated

using polygons for national park boundaries (Office for National Statistics, 2022c). The

local election data for each local authority was taken from Election Centre which provides

results from 1995 to 2015 (Elections Centre, 2020). The data for elections post-2015 has

not yet been integrated and so I simply extrapolate forward the vote shares from 2015 to

2022.

B.1 Threshold for National Significance

One important factor in considering the planning approval process is whether the decision

was made at the national or local level. A key threshold to determine if a project is deemed

of national significance is whether it is above a certain size, generally taken to be a size

of 50MW or greater. Figure B.1 shows the distribution of project sizes for both wind and

solar projects. The vast majority of projects larger than 50MW are decided nationally,

while almost all of those smaller than 50MW are decided locally.

The bunching of projects in Figure B.1 may indicate developers strategically size their

projects with certain cutoff points in mind. The clearest demonstration of this actually

appears to be for solar projects. There is a large spike in projects at 5MW. This reflects

the more generous feed-in-tariff subsidy regime that applies to projects up to 5MW in size,

and this bunching has been used to show the extent to which these subsidies accelerated

the deployment of solar in the UK (Srivastav, 2023). There is also a spike in solar

projects just below the 50MW threshold, perhaps suggesting that solar developers view

the national approval process as more onerous, not less. For wind projects there is not

particularly pronounced bunching at either the 5MW or 50MW threshold.

The existence of the 50MW threshold does suggest a possible regression discontinuity

design to exploit any change in approval likelihood as control moves from the local to the

national level. Figure B.2 shows how the share of projects decided at the national level

jumps discontinuously at 50MW. However, it does not appear there is any significant

jump in approval probability at this threshold. Moreover, this threshold has long been

well known to developers and given the sample size of projects there is insufficient mass

of observations around the 50MW cutoff. The seemingly sharp nature of the transition

from local to national control at this point also limits the scope for a matched analysis
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Figure B.1: Wind and Solar Projects by Size

Notes: This figure shows the distribition of projects at different sizes. The scale is capped at 100MW,
with all projects larger than 100MW aggregated into the right-most bin. Projects are grouped into
2.5MW bins. The 5MW threshold is marked with a dotted line as this is the maximum cutoff for the
more generous feed-in-tariff subsidy regime aimed at smaller projects. Larger utility-scale projects
are subject to less extensive and more competitive support schemes. The 50MW threshold is marked
with a dashed line as this is a size that has historically been used to determine whether a project is
of national significance, and therefore decided by the national Planning Inspectorate.

to compare similar projects that differ only in the extent of national vs local control.

B.2 Additional Regression Results

Table B.1 examines the robustness of the planning process results in the main text to

alternative specifications. I examine the impact of using using a logit specification rather

than a linear probability model and of using a log instead of linear functional form.

In general the direction and significance of the coefficients is fairly consistent across

these various alternative specifications. As in the main text, specifications including fixed

effects have less clear effects than those that use all the available variation.

Unlike the linear functional form models, the log functional form does still have highly

significant negative coefficients on the property value costs across all specifications. This

is likely due to the high degree of dispersion in the estimates of property value costs. The

tests of equality of the coefficients are less informative when using the log functional form

as it is not clear that decisionmakers should be equilibrating their evaluation of changes

in costs and benefits in percentage terms rather than absolute monetary values.

For the models with logit specifications, in each case they consistently identify coeffi-

cients with similar sign and significance level to the linear probability model. The tests
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Figure B.2: Wind and Solar Projects by Size

(a) Share Decided Nationally by Size

(b) Share Approved by Size

Notes: This figure shows how project decisionmaking and approval varies by project size. The scale
is capped at 100MW, with all projects larger than 100MW aggregated into the right-most bin. In
the top panel the variable of interest is whether there was local or national control over the initial
planning decision. In the bottom panel the variable of interest is whether a project was approved.
Points indicate the average of the dependent variable for projects grouped into 2.5MW bins. The
5MW threshold is marked with a dotted line as this is the maximum cutoff for the more generous
feed-in-tariff subsidy regime aimed at smaller projects. Larger utility-scale projects are subject to
less extensive and more competitive support schemes. The 50MW threshold is marked with a dashed
line as this is a size that has historically been used to determine whether a project is of national
significance, and therefore decided by the national Planning Inspectorate. The blue fitted line is
from a cubic regression with a break point at the 50MW threshold.

31



Table B.1: Planning Process Regressions for Project Costs and Benefits (Alternative
Specifications)

Model: (1) (2) (3) (4) (5) (6) (7) (8)
OLS OLS Logit Logit OLS OLS Logit Logit

Variables
Cost Property (£10m) -0.0071∗ -0.0014 -0.0287∗ -0.0069

(0.0038) (0.0061) (0.0169) (0.0296)
Cost Other (£10m) 0.0022∗∗∗ 0.0023∗∗∗ 0.0123∗∗ 0.0130∗∗

(0.0007) (0.0008) (0.0061) (0.0061)
Benefits (£10m) -0.0013∗∗ -0.0015∗∗ -0.0067 -0.0077

(0.0006) (0.0007) (0.0046) (0.0051)
log(Cost Property) -0.0159∗∗∗ -0.0177∗∗∗ -0.0699∗∗∗ -0.0868∗∗∗

(0.0029) (0.0036) (0.0139) (0.0190)
log(Cost Other) 0.2367∗∗∗ 0.1885∗∗ 1.030∗∗∗ 1.124∗∗∗

(0.0478) (0.0778) (0.2168) (0.4307)
log(Benefits) -0.2282∗∗∗ -0.1877∗∗ -0.9854∗∗∗ -1.095∗∗∗

(0.0444) (0.0747) (0.1990) (0.4081)

Fixed-effects
Local Authority Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 1,942 1,942 1,942 1,718 1,942 1,942 1,942 1,718
Squared Correlation 0.01340 0.22330 0.01660 0.12804 0.05296 0.24240 0.05324 0.15005
Pseudo R2 0.00929 0.17409 0.01177 0.10085 0.03749 0.19124 0.04000 0.11871
BIC 2,823.0 4,152.9 2,690.7 3,214.1 2,743.5 4,104.5 2,614.7 3,171.6
β1=β2 p-value 0.0177 0.5410 0.0254 0.5078 5.47× 10−8 0.0063 2.23× 10−7 0.0041
β1=β3 p-value 0.0300 0.6353 0.0482 0.6257 1.75× 10−8 0.0047 6.84× 10−8 0.0031

Clustered (Local Authority) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table shows the impact on approval probability from changes to local vs non-local
project impacts. These specifications replicate the basic non-interacted results from the main text
and therefore include specifications both with and without fixed effects included. Models 1-4 focus on
a linear functional form and the 5-8 examine a log functional form. Models 3-4 and 7-8 are estimated
using logit instead of OLS. For logit specifications each coefficient has been scaled to reflect the odds
ratio of approval. For specifications using linear versions of the covariates the coefficients reflect the
effect of a £10 million change in costs and benefits.
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for equality of coefficients presented at the bottom of the table also lead to the same

conclusions as those for specifications using a linear probability model.

I also examine the sensitivity of my findings to the inclusion of additional controls.

For instance, the findings in Table 2 suggest we might expect that projects proposed by

large firms are more likely to be approved and projects proposed in areas that already

have a lot of capacity are less likely to be approved. When controlling for both these

factors the results show much the same pattern as in the main analysis.

Table B.2: Planning Process Regressions for Project Costs and Benefits (Additional
Controls)

Model: (1) (2) (3) (4) (5) (6) (7) (8)

Variables
Cost Property (£10m) -0.0087∗∗ -0.0023 -0.0021 -0.0099∗∗ 0.0002 0.0076 0.0050 -0.0023

(0.0043) (0.0052) (0.0054) (0.0044) (0.0058) (0.0063) (0.0059) (0.0062)
Cost Other (£10m) 0.0020∗∗∗ 0.0018 0.0019∗∗∗ 0.0258∗∗ 0.0028∗∗∗ 0.0009 0.0029∗∗∗ -0.0019

(0.0006) (0.0032) (0.0006) (0.0130) (0.0007) (0.0036) (0.0008) (0.0142)
Benefits (£10m) -0.0015∗∗∗ -0.0004 -0.0015∗∗∗ -0.0250∗∗∗ -0.0022∗∗∗ -0.0003 -0.0024∗∗∗ -0.0078

(0.0005) (0.0021) (0.0005) (0.0089) (0.0006) (0.0026) (0.0007) (0.0098)
Cost Property (£10m) x Interaction -0.0191∗∗ -0.0153∗ 0.0314∗∗∗ -0.0257∗∗ -0.0170 0.0263∗∗

(0.0092) (0.0078) (0.0117) (0.0121) (0.0108) (0.0104)
Cost Other (£10m) x Interaction 0.0015 0.0006 -0.0240∗ 0.0058 -0.0002 0.0047

(0.0079) (0.0020) (0.0130) (0.0092) (0.0019) (0.0142)
Benefits (£10m) x Interaction -0.0030 -0.0004 0.0237∗∗∗ -0.0060 0.0004 0.0056

(0.0048) (0.0017) (0.0089) (0.0057) (0.0016) (0.0097)
Interaction: Wealthy No Yes No No No Yes No No
Interaction: Conservative No No Yes No No No Yes No
Interaction: National No No No Yes No No No Yes

Fixed-effects
Local Authority Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 1,942 1,889 1,936 1,942 1,942 1,889 1,936 1,942
R2 0.09006 0.08095 0.09179 0.09978 0.28429 0.27828 0.28304 0.29040
Within R2 0.08837 0.07987 0.08940 0.09615
-β1=-β2 p-value 0.0133 0.4942 0.4749 0.0060 0.6572 0.3356 0.7207 0.9805
-β1=β3 p-value 0.0179 0.6280 0.5218 0.0001 0.7307 0.2647 0.6589 0.3544
-β1=-β2 p-value (Interaction) 0.0273 0.0020 0.0903 0.0648 0.1094 0.0307
-β1=β3 p-value (Interaction) 0.0101 0.0025 0.0840 0.0300 0.1257 0.0269

Clustered (Local Authority) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table shows the impact on approval probability for changes to various project costs
and benefits. Columns reflect the range of fixed effects included and differential effects studied.
Columns 1 to 4 are the baseline model with no fixed effects. Columns 5 to 8 include year-of-sample
and local authority fixed effects. Models including an interaction effect specify the name of the
interaction variable in the rows below. “Wealthy” refers to interaction with a dummy for whether a
local authority is wealthier than average. The “Conservative” refers to interaction with a dummy for
whether a local authority is politically conservative. “National” refers to interaction with a dummy
for whether a project’s planning application was decided at the national level. Coefficients reflect
the effect of a £10 million change in costs and benefits. I also include additional controls based on
the firm that a project was proposed by and the log of the cumulative capacity already installed in
a given local authority.

It may also be that the findings are driven by smaller projects that are assumed to

impose large property costs because they are located on industrial sites near to urban

areas. To test this and examine a set of projects more in line with larger utility-scale
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wind projects I repeat the analysis using only projects that are larger than 10MW. Here

again the results show much the same core findings as in the main analysis.

Table B.3: Planning Process Regressions for Project Costs and Benefits (Larger
Projects)

Model: (1) (2) (3) (4) (5) (6) (7) (8)

Variables
Cost Property (£10m) -0.0101∗∗ 0.0016 -0.0129 -0.0152∗∗∗ -0.0034 0.0079 -0.0088 -0.0128

(0.0047) (0.0074) (0.0082) (0.0054) (0.0087) (0.0083) (0.0096) (0.0105)
Cost Other (£10m) 0.0019∗∗∗ 0.0032 0.0019∗∗ 0.0168 0.0026∗∗∗ 0.0063∗∗ 0.0026∗∗∗ 0.0127

(0.0007) (0.0042) (0.0008) (0.0105) (0.0006) (0.0027) (0.0007) (0.0141)
Benefits (£10m) -0.0010∗ 0.0002 -0.0010 -0.0185∗∗∗ -0.0018∗∗∗ -0.0021 -0.0018∗∗∗ -0.0157

(0.0006) (0.0031) (0.0006) (0.0069) (0.0005) (0.0027) (0.0006) (0.0095)
Cost Property (£10m) x Interaction -0.0222∗∗ 0.0058 0.0372∗∗∗ -0.0455∗∗∗ 0.0543∗∗∗ 0.0334∗∗

(0.0105) (0.0097) (0.0132) (0.0152) (0.0192) (0.0159)
Cost Other (£10m) x Interaction 0.0072 1.89× 10−5 -0.0149 0.0128 0.0005 -0.0100

(0.0076) (0.0020) (0.0105) (0.0088) (0.0014) (0.0141)
Benefits (£10m) x Interaction -0.0057 −4.39× 10−5 0.0174∗∗ -0.0098∗ -0.0004 0.0137

(0.0047) (0.0017) (0.0070) (0.0056) (0.0012) (0.0094)
Interaction: Wealthy No Yes No No No Yes No No
Interaction: Conservative No No Yes No No No Yes No
Interaction: National No No No Yes No No No Yes

Fixed-effects
Local Authority Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 994 943 993 994 994 943 993 994
R2 0.02759 0.01744 0.02787 0.04437 0.24635 0.23992 0.24965 0.25675
Within R2 0.01774 0.02257 0.02307 0.03130
-β1=-β2 p-value 0.0110 0.8522 0.0705 0.0107 0.4824 0.8448 0.2292 0.1527
-β1=β3 p-value 0.0179 0.8149 0.0882 0.0002 0.5448 0.4907 0.2664 0.0329
-β1=-β2 p-value (Interaction) 0.0036 0.1020 0.0798 0.0016 0.0197 0.1338
-β1=β3 p-value (Interaction) 0.0044 0.1343 0.0692 0.0024 0.0174 0.1197

Clustered (Local Authority) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table shows the impact on approval probability for changes to various project costs
and benefits. Columns reflect the range of fixed effects included and differential effects studied.
Columns 1 to 4 are the baseline model with no fixed effects. Columns 5 to 8 include year-of-sample
and local authority fixed effects. Models including an interaction effect specify the name of the
interaction variable in the rows below. “Wealthy” refers to interaction with a dummy for whether a
local authority is wealthier than average. The “Conservative” refers to interaction with a dummy for
whether a local authority is politically conservative. “National” refers to interaction with a dummy
for whether a project’s planning application was decided at the national level. Coefficients reflect
the effect of a £10 million change in costs and benefits. Here I conduct the analysis after limiting
the projects in the sample to those that are larger than 10MW.

I also examine the role of measurement error in my estimates of the local property

value costs. Classical measurement error may lead to attenuation bias in the coefficients.

As a check I therefore instrument for local property costs using historic population density,

which is a common instrument used in other studies. I use the log of population density

in 1971 in the 6km radius surrounding a project (Lloyd et al., 2018). This time period

is two decades before the first wind farm was ever built in the UK at a time when

wind power was not envisaged as having any meaningful role in electricity supply. My

instrument produces a strong first stage with F-statistics generally larger than twenty

across specifications. The results show much the same pattern as in the main analysis
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but with the coefficients on the local property value costs consistently larger in magnitude.

Table B.4: Planning Process Regressions for Project Costs and Benefits (Instrumenting
for Measurement Error)

Model: (1) (2) (3) (4) (5) (6) (7) (8)

Variables
Cost Property (£10m) -0.0161 0.0046 -0.0096 -0.0243∗ -0.0261 -0.0047 -0.0265 -0.0326

(0.0129) (0.0128) (0.0148) (0.0133) (0.0320) (0.0279) (0.0345) (0.0333)
Cost Other (£10m) 0.0021∗∗∗ 0.0040 0.0022∗∗∗ 0.0289∗∗∗ 0.0022∗∗∗ 0.0003 0.0024∗∗∗ -0.0082

(0.0007) (0.0038) (0.0008) (0.0106) (0.0008) (0.0042) (0.0008) (0.0134)
Benefits (£10m) -0.0013∗∗ -0.0016 -0.0014∗∗ -0.0269∗∗∗ -0.0014∗∗ 0.0005 -0.0016∗∗ -0.0027

(0.0006) (0.0024) (0.0006) (0.0072) (0.0007) (0.0032) (0.0008) (0.0091)
Cost Property (£10m) x Interaction -0.0698∗∗∗ -0.0249 0.0403 -0.1040∗∗ -0.0022 0.0464

(0.0216) (0.0173) (0.0274) (0.0405) (0.0284) (0.0313)
Cost Other (£10m) x Interaction 0.0059 -0.0005 -0.0271∗∗ 0.0114 -0.0010 0.0104

(0.0078) (0.0020) (0.0107) (0.0082) (0.0018) (0.0134)
Benefits (£10m) x Interaction -0.0043 0.0005 0.0258∗∗∗ -0.0083 0.0010 0.0012

(0.0049) (0.0017) (0.0073) (0.0051) (0.0016) (0.0090)
Interaction: Wealthy No Yes No No No Yes No No
Interaction: Conservative No No Yes No No No Yes No
Interaction: National No No No Yes No No No Yes

Fixed-effects
Local Authority Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 1,942 1,889 1,936 1,942 1,942 1,889 1,936 1,942
R2 0.01115 -0.01124 0.00778 0.02007 0.21640 0.18925 0.21382 0.22205
Within R2 0.00190 -0.03363 0.00149 0.00909
Wald (1st stage), Cost Property (£10m) 77.849 36.577 40.517 37.109 36.553 18.166 26.977 18.101
Wald (1st stage), Cost Property (£10m) x Interaction 19.750 33.598 15.179 34.375 54.612 15.304
-β1=-β2 p-value 0.1613 0.9674 0.4253 0.0018 0.3758 0.8517 0.4007 0.5073
-β1=β3 p-value 0.1811 0.8181 0.4568 0.0003 0.3900 0.8765 0.4137 0.2795
-β1=-β2 p-value (Interaction) 0.0024 0.0198 0.6094 0.0385 0.3128 0.7332
-β1=β3 p-value (Interaction) 0.0032 0.0229 0.5914 0.0429 0.3260 0.7181

Clustered (Local Authority) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table shows the impact on approval probability for changes to various project costs
and benefits. Columns reflect the range of fixed effects included and differential effects studied.
Columns 1 to 4 are the baseline model with no fixed effects. Columns 5 to 8 include year-of-sample
and local authority fixed effects. Models including an interaction effect specify the name of the
interaction variable in the rows below. “Wealthy” refers to interaction with a dummy for whether a
local authority is wealthier than average. The “Conservative” refers to interaction with a dummy for
whether a local authority is politically conservative. “National” refers to interaction with a dummy
for whether a project’s planning application was decided at the national level. Coefficients reflect
the effect of a £10 million change in costs and benefits. I also instrument for local property costs
using the log of population density in 1971 within 6km of each project.

B.3 Local Opposition and Public Comments

To further examine what might be driving the observed sensitivity to local impacts,

and whether this can be linked to local opposition, I gathered information from local

authority websites on the number of public comments for a subsample of onshore wind

projects in Scotland. Specifically, the data was collected using the Improvement Service

database that includes detailed information on every planning application submitted to

local authorities in Scotland (Improvement Service, 2022). I use this dataset to identify
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possible wind project applications through a keyword search of the application details.24

I then extract key information on each project from the relevant local authority website at

the URLs provided in the dataset. One piece of information I can extract is the number of

individual public comments that are recorded on the website. I then match the projects

in the Improvement Service database to those in my sample using the planning reference

code used for the local planning authority.

Over the 1990-2018 period I am able to collect data on public comments and find

a match for 330 projects. Around 2015 this captures almost 50% of wind projects in

Scotland in my sample, although in earlier and later years the share is closer to 25%.

The lack of more comprehensive coverage is due to a range of factors. First, the database

includes planning applications for smaller projects that are decided by local authorities,

while larger wind projects that are decided nationally by the Scottish government are not

included. Second, there is no guarentee that historical data or the formatting of local

authority websites allows for public comment data to be consistently gathered. Third,

the planning reference codes are not consistently provided in my sample dataset and

so perfect matching for all relevant projects is not feasible. Despite these limitations,

the subsample still includes several hundred projects of varying sizes across multiple

local authorities. Some projects receive few public comments while some receive many,

with the most contentious project receiving 1,721 comments. On average roughly three

quarters of comments are classed as objecting, with only one quarter supportive. To be

clear, these public comments are one way that public input for a planning application is

recorded. In addition to allowing the submission of individual public comments, there

are frequently consultation sessions and town hall events where public views are sought.

As such this count of public comments provides one partial measure of local opposition,

although it is a measure that is likely to be strongly correlated with the extent of public

opposition more generally.

Table B.5 shows the results of regressing the number of comments a project received on

the estimated local and non-local costs and benefits. Here I find evidence that projects

with larger local costs, as measured by changes to property values, appear to receive

higher numbers of public comments. A £10 million increase in local property value costs

is associated with around 12 additional public comments. The association continues to be

statistically significant after including local authority and year fixed effects. There is no

significant relationship between the other non-local costs and benefits and the number of

public comments. In fact the coefficients also have the wrong sign, mirroring the findings

in the main planning process regressions that focus on the likelihood of approval.

Table B.6 shows the results of regressing whether a project was approved on the

24For instance, using the phrase “wind turbine” I can identify roughly seven thousand applications
submitted over my sample period.
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Table B.5: Planning Process Regressions for Project Costs and Benefits (Comments)

Dependent Variables: Total Object Support Total Object Support
Model: (1) (2) (3) (4) (5) (6)

Variables
Cost Property (£10m) 11.74∗∗ 8.683∗ 2.829∗ 6.611∗∗ 2.207 4.140∗

(5.662) (4.447) (1.661) (2.735) (2.313) (2.101)
Cost Other (£10m) -14.36 -11.31 -3.336 -7.829 -6.257 -2.040

(8.944) (7.025) (2.623) (14.37) (8.462) (6.450)
Benefits (£10m) 12.71∗∗ 10.38∗∗ 2.403 8.000 6.795 1.386

(5.364) (4.214) (1.573) (8.670) (5.402) (4.021)

Fixed-effects
Local Authority Yes Yes Yes
Year Yes Yes Yes

Fit statistics
Observations 330 330 330 330 330 330
R2 0.03874 0.04165 0.01597 0.24874 0.27288 0.11483
Within R2 0.01605 0.01764 0.01353

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table shows the impact on the number of public comments from changes to local vs
non-local project impacts. These results include specifications both with and without fixed effects.
Analysis is for a subsample of onshore wind projects in Scotland for which public comment infor-
mation has been collected from local planning authority websites. “Total” refers to the count of all
comments, “Object” refers to the count of objecting comments and “Support” refers to the count of
supporting comments. The coefficients reflect the effect of a £10 million change in costs and benefits.

number of comments a project received. I find clear evidence that projects with more

public comments, and specifically more objecting public comments, are less likely to be

approved. Ten additional objecting comments reduces approval probability by 1.2%. The

effect for supporting comments is largely the inverse but is not statistically significant.

These findings hold up even when including local authority and year fixed effects.

Taken together this additional analysis of local opposition as measured by public

comments indicates that: 1) local opposition is higher for projects that have larger lo-

cal impacts on nearby property values, and 2) more local opposition is associated with

reductions in the chance of a wind project being approved.
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Table B.6: Planning Process Regressions for Project Public Comments

Model: (1) (2) (3) (4)

Variables
Total -0.0006∗∗∗ -0.0004

(0.0002) (0.0003)
Support 0.0011 0.0011

(0.0007) (0.0008)
Object -0.0012∗∗∗ -0.0009∗∗∗

(0.0003) (0.0002)

Fixed-effects
Local Authority Yes Yes
Year Yes Yes

Fit statistics
Observations 330 330 330 330
R2 0.04649 0.06393 0.25048 0.26374
Within R2 0.02205 0.03936

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table shows the impact on approval probability from changes to the number of public
comments. These results include specifications both with and without fixed effects. Analysis is
for a subsample of onshore wind projects in Scotland for which public comment information has
been collected from local planning authority websites. “Total” refers to the count of all comments,
“Object” refers to the count of objecting comments and “Support” refers to the count of supporting
comments. This provides valuable evidence that local opposition is associated with a project being
less likely to be approved.

C Misallocated Investment

My primary approach to analyzing misallocated investment entails finding the set of

projects that can produce the observed annual deployment of renewable energy at least

cost. To further illustrate the findings in the main text, Figure C.1 plots the actual or

best set of projects across the range of scenarios studied.

Naturally my analysis is potentially subject to uncertainties in the underlying esti-

mates of costs and benefits.25 As robustness checks, Tables C.1, C.2, C.3, C.4, C.5, C.6,

C.7, C.8 and C.9 reproduce the findings from the main text for a range of sensitivities.

The aim is to convey the extent to which the overall findings are affected by varying key

assumptions. In the base case the central estimates for local property value costs and

social market and environmental benefits are used, with a discount rate of 3.5%. The

sensitivies are therefore as follows.

Table C.1 provides the results for the “Local Property Costs” sensitivity. Here the

25Despite the lengths this paper has gone to in estimating the impacts of these projects, it is impossible
to fully account for the the idiosyncracies of each project and local area. For any given project, planning
officials will have a better understanding of their specific circumstances, and so some humility about the
ability of this kind of analysis to second guess individual decisions is probably in order. Still, the overall
insights about systematic biases in the broader process remain.
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analysis is the same as the base case except alternative capitalization effects are assumed

for the property value costs. These alternative assumptions are shown in the main text.

The changes to the size of local property value costs have a relatively minimal impact on

the calculated size of misallocation, in large part because these costs are small relative

to the other social costs and benefits.

Table C.2 provides the results for the “Social Benefits” sensitivity. Here the analysis

is the same as the base case except the benefits of wind and solar projects are assumed

to be from the lower or higher range estimated. These alternative values can be seen in

Figure A.3 and Figure A.6. The changes to the social benefits, and thus the resulting

social net present value, can be quite substantial depending on the assumptions made.

Notably though, the relative gains from reallocation as the scenarios become less con-

strained appear fairly stable, and even in the low case there is still potential evidence of

underinvestment.

Table C.3 provides the results for the “Discount Rate” sensitivity. Here the analysis is

the same as the base case except the discount rate is assumed to be a lower value of 1.5%

or a higher value of 7%. Both are alternative values provided in UK government guidance

(BEIS, 2021). The lower value is likely the more informative from a social perspective

and the higher value is likely informative to the extent it better aligns with private

rates of return. The findings generally mirror the prior sensitivity on social benefits.

A low discount rate makes renewables look more favorable by increasing the benefits of

electricity production (spread into the future) more than it does the capital and operating

costs (mostly incurred at the start). Conversely a high discount rate creates the reverse

situation, making renewables look less favorable. Even with a discount rate as high as

7%, it does seem there is still evidence of misallocation and underinvestment.

Table C.4 provides the results for the “Extrapolation Error” sensitivity. Here the

analysis is the same as the base case except it is now assumed that the projects that

were ultimately cancelled are in reality less cost-effective than the original estimation

would suggest. In the low error case it is assumed that proposed projects that were

cancelled actually have 10% higher costs and 10% lower benefits than originally estimated

in the base case. In the high error case it is assumed that proposed projects that were

cancelled actually have 25% higher costs and 25% lower benefits than originally estimated

in the base case. The motivation is that the estimation of costs and benefits is heavily

based on information gained from actual completed projects. Extrapolating this to make

predictions for the costs and benefits of projects that were ultimately cancelled could be

an issue if the cancelled projects failed precisely because they were more costly (e.g. were

poorly conceived or managed and so would have had higher unit costs). In this sensitivity

we can see that increasing the costs and decreasing the benefits for any cancelled projects

does indeed reduce the potential efficiency gains from reallocation. This makes sense as
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it makes the proposed projects that could substitute for existing completed projects look

much less attractive. However, even with a large combined increase in costs and reduction

in benefits for these cancelled projects, the same qualitative findings of misallocation and

underinvestment still remain.

Table C.5 provides the results for the “Noise” sensitivity. Here the analysis is the

same as the base case except now noise is added to the estimates of costs and benefits.

Specifically, a percentage adjustment is made to each cost and benefit estimate for each

project based on values drawn from a normal distribution with mean zero and some

positive standard deviation. This leads the costs and benefits for different projects to be

randomly increased or decreased proportionally relative to the baseline estimates. In the

low noise case the standard deviation of the noise added is 10% relative to the base case.

In the high noise case the standard deviation of the noise added is 25% relative to the base

case. The motivation is that more general noise in the estimates of costs and benefits may

itself bias the misallocation analysis upwards. To examine the extent to which this may

be a problem let us assume that the existing estimates of costs and benefits are in fact

completely accurate. If this is the case, how much larger do the gains from reallocation

become as noise is added to the estimates? The sensitivity results do indeed show that

adding noise does tend to increase the amount of misallocation identified. However, the

change relative to the base case is fairly muted, even when a large amount of noise is

added. This suggests the core findings are likely quite robust and not driven simply by

noise in the underlying estimates of costs and benefits.

Table C.6 provides the results for the “Technology” sensitivity. Here the analysis is

the same as the base case except now reallocation across technology types is limited in

the various constrained scenarios. Specifically, I use the same four misallocation scenar-

ios but first impose the constraint that reallocation cannot occur across wind and solar

projects, and then impose the additional constraint that reallocation cannot occur across

onshore wind, offshore wind and solar projects. As might be expected, adding additional

constraints reduces the potential gains from reallocation. However, the change relative to

the base case is fairly muted, with any notable divergence only appearing when limiting

the scope for reallocating across local authorities away from offshore wind. Overall this

suggests the core findings are not driven simply by large shifts away from one technol-

ogy type (e.g. solar or offshore wind) and are instead driven to a significant degree by

reallocation amongst comparable projects with equivalent technologies.

Table C.7 provides the results for the “Project Size” sensitivity. Here the analysis is

the same as the base case except now the analysis is limited to larger projects. Specifically,

I use the same four misallocation scenarios but first conduct the analysis only using

projects larger than 10MW and then only using projects larger than 25MW. In general

the potential gains to social net present value only decline modestly relative to the base
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case. The big difference relates to local property value impacts which are frequently

concentrated at a limited number of small projects. Focusing on larger wind farms with

multiple turbines removes these outliers such that total local property costs fall from £8.5

billion in the base case to £3.2 billion and £0.9 billion in the sensitivities. Focusing on

larger projects also results in total local property costs increasing in the full reallocation

scenario when compared to current levels.

Table C.8 provides the results for the “Spatial” sensitivity. Here the analysis is the

same as the base case except now the private value of the electricity produced by each

project is assumed to have no spatial variation, which is in line with the historical lack

of locational pricing in the UK. This inclusion of spatial variation does indeed cause a

modest shift in the selected projects toward building less in the north and more in the

south. Removing the spatial variation in this way reduces the available benefits from

the existing set of projects (which presumably already capture some of these spatial

differentials through redispatch revenues) and for the optimal set in the reallocation

scenarios.

Table C.9 provides the results for the “Non-Marginal” sensitivity. Here the analysis is

the same as the base case except now the private value of the electricity produced by each

project is assumed to be lower to account for the way an expanded rollout of renewable

energy should depress equilibrium wholesale prices over-and-above the observed levels.

To approximate this, I first run the base case analysis and compare the share of electricity

met by renewables in the full reallocation scenario (Scenario 4) with the share met by

renewables in the actual scenario in each year. I find that the accelerated deployment of

renewables starts to pick up in 2009, rising to a peak of a 20 percentage point differential

in the share met by renewables in the mid-2020s, before gradually falling back to parity

by the 2050s.

To approximate the impact of a higher share of renewables on wholesale prices I

utilize my hourly values for wholesale prices and electricity generation by source type.

If I simply regress the log of hourly wholesale prices on the hourly renewable share I

find that a one percentage point increase in the renewable share leads to a roughly 0.2%

decrease in prices. This response is fairly stable when including any of year-of-sample,

date-of-sample, and hour-of-day fixed effects.

I take my measure of the sensitivity of wholesale prices to the share of renewables

and combine this with the increase in the renewable share that is anticipated by the full

reallocation scenario. So in the mid-2020s I calculate that the projected 20 percentage

point increase in the share of renewables (relative to observed levels) should depress

wholesale prices by around 4%. I then re-run the misallocation analysis, assuming each

project earns a lower private value for their electricity in accordance with the annual
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adjustments they would be exposed to over their lifetime. This means a project built

in 2000 would see a 1.2% reduction in the private benefits of their output due to non-

marginal price adjustments, while a project built in 2020 would see a 3.6% reduction.

Applying these adjustments and re-running the misallocation analysis does reduce the

estimated costs of misallocation in Table C.9. However, the change is small such that

instead of a 55% increase in renewables under full reallocation I find a 45% increase.

The broader core findings of the misallocation analysis still hold, with significant gains

available from both within-local-authority and across-local-authority reallocation.

Table C.1: Misallocated Investment Sensitivity Analysis (Local Property Costs)

No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2904 41 1883 0.78 0.30 0.26 -8.5 -142.4 160.1 9.3
1 Best Fixed Fixed 2904 40 1731 0.79 0.29 0.29 -6.8 -136.9 159.2 15.4
2 Best - Fixed 2904 40 1375 0.76 0.28 0.32 -3.8 -114.7 153.7 35.2
3 Best Fixed - 2904 43 1593 0.76 0.46 0.47 -2.9 -107.4 157.2 46.8
4 Best - - 4509 66 2566 0.74 0.40 0.39 -4.5 -170.7 239.3 64.1

(a) Base
No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2904 41 1883 0.78 0.30 0.25 -4.8 -142.4 160.1 13.0
1 Best Fixed Fixed 2904 40 1711 0.80 0.30 0.29 -3.9 -136.6 159.0 18.5
2 Best - Fixed 2904 39 1368 0.77 0.28 0.33 -2.6 -113.8 153.5 37.1
3 Best Fixed - 2904 42 1588 0.78 0.46 0.48 -2.4 -105.9 156.8 48.5
4 Best - - 4610 67 2704 0.74 0.39 0.39 -3.8 -174.5 244.8 66.5

(b) Low Local Property Cost
No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2904 41 1883 0.78 0.30 0.28 -13.3 -142.4 160.1 4.5
1 Best Fixed Fixed 2904 40 1737 0.79 0.29 0.31 -10.6 -137.2 159.3 11.5
2 Best - Fixed 2904 40 1359 0.75 0.28 0.32 -5.3 -115.3 153.7 33.1
3 Best Fixed - 2904 43 1623 0.75 0.45 0.47 -3.5 -108.9 157.7 45.3
4 Best - - 4397 64 2439 0.73 0.40 0.38 -4.7 -166.8 233.2 61.8

(c) High Local Property Costs

Notes: These tables show the aggregate costs and benefits of the actual observed set of wind and
solar projects, as well as the same information for a range scenarios identifying the least cost set of
proposed projects. Each table refers to a different sensitivity. All values are the cumulative lifetime
totals for all wind and solar projects. The “Actual” row refers to the observed set of projects that
were actually built. The “Best” rows then refer to different scenarios for the optimal set of projects
subject to a series of constraints on the extent to which deployment can be reallocated. “Scenario
1” allows reallocation subject to the total output remaining unchanged by year and local authority.
“Scenario 2” allows reallocation subject to the total output remaining unchanged by local authority.
“Scenario 3” allows reallocation subject to the total output remaining unchanged by year. “Scenario
4” allows complete reallocation and so may lead to a different total output than was actually observed.
Information on project characteristics includes total output, capacity and number of projects, as well
as measures of the share of capacity in Scotland and the share of capacity that has any local property
costs.
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Table C.2: Misallocated Investment Sensitivity Analysis (Social Benefits)

No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2904 41 1883 0.78 0.30 0.26 -8.5 -142.4 160.1 9.3
1 Best Fixed Fixed 2904 40 1731 0.79 0.29 0.29 -6.8 -136.9 159.2 15.4
2 Best - Fixed 2904 40 1375 0.76 0.28 0.32 -3.8 -114.7 153.7 35.2
3 Best Fixed - 2904 43 1593 0.76 0.46 0.47 -2.9 -107.4 157.2 46.8
4 Best - - 4509 66 2566 0.74 0.40 0.39 -4.5 -170.7 239.3 64.1

(a) Base
No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2904 41 1883 0.78 0.30 0.26 -8.5 -142.4 136.4 -14.4
1 Best Fixed Fixed 2904 40 1719 0.79 0.30 0.29 -6.9 -136.7 135.5 -8.2
2 Best - Fixed 2904 39 1352 0.76 0.28 0.32 -3.9 -114.3 130.8 12.6
3 Best Fixed - 2904 42 1523 0.78 0.47 0.48 -3.3 -106.7 133.9 24.0
4 Best - - 3368 48 1577 0.77 0.46 0.46 -2.9 -115.6 151.9 33.3

(b) Low Social Benefits
No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2904 41 1883 0.78 0.30 0.26 -8.5 -142.4 189.5 38.6
1 Best Fixed Fixed 2904 40 1731 0.79 0.29 0.29 -6.8 -137.1 188.4 44.6
2 Best - Fixed 2904 40 1358 0.76 0.28 0.32 -3.7 -115.0 181.8 63.1
3 Best Fixed - 2904 43 1616 0.76 0.46 0.46 -2.9 -107.6 185.7 75.2
4 Best - - 5504 79 3169 0.74 0.35 0.35 -6.5 -228.3 349.2 114.3

(c) High Social Benefits

Notes: These tables show the aggregate costs and benefits of the actual observed set of wind and
solar projects, as well as the same information for a range scenarios identifying the least cost set of
proposed projects. Each table refers to a different sensitivity. All values are the cumulative lifetime
totals for all wind and solar projects. The “Actual” row refers to the observed set of projects that
were actually built. The “Best” rows then refer to different scenarios for the optimal set of projects
subject to a series of constraints on the extent to which deployment can be reallocated. “Scenario
1” allows reallocation subject to the total output remaining unchanged by year and local authority.
“Scenario 2” allows reallocation subject to the total output remaining unchanged by local authority.
“Scenario 3” allows reallocation subject to the total output remaining unchanged by year. “Scenario
4” allows complete reallocation and so may lead to a different total output than was actually observed.
Information on project characteristics includes total output, capacity and number of projects, as well
as measures of the share of capacity in Scotland and the share of capacity that has any local property
costs.

44



Table C.3: Misallocated Investment Sensitivity Analysis (Discount Rate)

No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2904 41 1883 0.78 0.30 0.26 -8.5 -142.4 160.1 9.3
1 Best Fixed Fixed 2904 40 1731 0.79 0.29 0.29 -6.8 -136.9 159.2 15.4
2 Best - Fixed 2904 40 1375 0.76 0.28 0.32 -3.8 -114.7 153.7 35.2
3 Best Fixed - 2904 43 1593 0.76 0.46 0.47 -2.9 -107.4 157.2 46.8
4 Best - - 4509 66 2566 0.74 0.40 0.39 -4.5 -170.7 239.3 64.1

(a) Base
No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2904 41 1883 0.78 0.30 0.26 -10.7 -154.8 192.7 27.3
1 Best Fixed Fixed 2904 40 1745 0.79 0.29 0.29 -8.5 -149.1 191.9 34.3
2 Best - Fixed 2904 40 1369 0.76 0.28 0.32 -4.6 -125.5 185.1 55.1
3 Best Fixed - 2904 43 1620 0.76 0.46 0.46 -3.3 -118.1 190.0 68.6
4 Best - - 5308 76 2983 0.74 0.35 0.34 -6.4 -236.6 342.4 99.5

(b) Low Discount Rate
No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2904 41 1883 0.78 0.30 0.26 -6.0 -127.9 120.6 -13.3
1 Best Fixed Fixed 2904 40 1718 0.79 0.29 0.29 -4.9 -123.2 120.0 -8.0
2 Best - Fixed 2904 40 1362 0.76 0.28 0.32 -2.9 -101.8 115.6 10.8
3 Best Fixed - 2904 42 1561 0.77 0.47 0.48 -2.5 -94.8 117.4 20.0
4 Best - - 3422 49 1722 0.75 0.45 0.45 -2.1 -105.5 136.2 28.6

(c) High Discount Rate

Notes: These tables show the aggregate costs and benefits of the actual observed set of wind and
solar projects, as well as the same information for a range scenarios identifying the least cost set of
proposed projects. Each table refers to a different sensitivity. All values are the cumulative lifetime
totals for all wind and solar projects. The “Actual” row refers to the observed set of projects that
were actually built. The “Best” rows then refer to different scenarios for the optimal set of projects
subject to a series of constraints on the extent to which deployment can be reallocated. “Scenario
1” allows reallocation subject to the total output remaining unchanged by year and local authority.
“Scenario 2” allows reallocation subject to the total output remaining unchanged by local authority.
“Scenario 3” allows reallocation subject to the total output remaining unchanged by year. “Scenario
4” allows complete reallocation and so may lead to a different total output than was actually observed.
Information on project characteristics includes total output, capacity and number of projects, as well
as measures of the share of capacity in Scotland and the share of capacity that has any local property
costs.
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Table C.4: Misallocated Investment Sensitivity Analysis (Extrapolation Error)

No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2904 41 1883 0.78 0.30 0.26 -8.5 -142.4 160.1 9.3
1 Best Fixed Fixed 2904 40 1731 0.79 0.29 0.29 -6.8 -136.9 159.2 15.4
2 Best - Fixed 2904 40 1375 0.76 0.28 0.32 -3.8 -114.7 153.7 35.2
3 Best Fixed - 2904 43 1593 0.76 0.46 0.47 -2.9 -107.4 157.2 46.8
4 Best - - 4509 66 2566 0.74 0.40 0.39 -4.5 -170.7 239.3 64.1

(a) Base
No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2904 41 1883 0.78 0.30 0.26 -8.5 -142.4 160.1 9.3
1 Best Fixed Fixed 2904 40 1794 0.79 0.30 0.28 -6.9 -138.0 158.6 13.8
2 Best - Fixed 2904 40 1418 0.75 0.28 0.29 -3.7 -117.4 151.9 30.8
3 Best Fixed - 2904 43 1687 0.75 0.45 0.45 -3.0 -111.6 153.0 38.5
4 Best - - 4206 59 2069 0.76 0.41 0.39 -3.5 -159.1 215.6 53.0

(b) Low Extrapolation Error (10%)
No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2904 41 1883 0.78 0.30 0.26 -8.5 -142.4 160.1 9.3
1 Best Fixed Fixed 2904 40 1819 0.79 0.30 0.28 -7.1 -138.7 158.4 12.6
2 Best - Fixed 2904 40 1467 0.75 0.29 0.27 -3.8 -121.2 152.4 27.4
3 Best Fixed - 2904 43 1755 0.73 0.40 0.39 -2.5 -119.3 151.5 29.7
4 Best - - 3716 51 1709 0.74 0.37 0.33 -2.2 -142.3 186.6 42.1

(c) High Extrapolation Error (25%)

Notes: These tables show the aggregate costs and benefits of the actual observed set of wind and
solar projects, as well as the same information for a range scenarios identifying the least cost set of
proposed projects. Each table refers to a different sensitivity. All values are the cumulative lifetime
totals for all wind and solar projects. The “Actual” row refers to the observed set of projects that
were actually built. The “Best” rows then refer to different scenarios for the optimal set of projects
subject to a series of constraints on the extent to which deployment can be reallocated. “Scenario
1” allows reallocation subject to the total output remaining unchanged by year and local authority.
“Scenario 2” allows reallocation subject to the total output remaining unchanged by local authority.
“Scenario 3” allows reallocation subject to the total output remaining unchanged by year. “Scenario
4” allows complete reallocation and so may lead to a different total output than was actually observed.
Information on project characteristics includes total output, capacity and number of projects, as well
as measures of the share of capacity in Scotland and the share of capacity that has any local property
costs.
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Table C.5: Misallocated Investment Sensitivity Analysis (Noise)

No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2904 41 1883 0.78 0.30 0.26 -8.5 -142.4 160.1 9.3
1 Best Fixed Fixed 2904 40 1731 0.79 0.29 0.29 -6.8 -136.9 159.2 15.4
2 Best - Fixed 2904 40 1375 0.76 0.28 0.32 -3.8 -114.7 153.7 35.2
3 Best Fixed - 2904 43 1593 0.76 0.46 0.47 -2.9 -107.4 157.2 46.8
4 Best - - 4509 66 2566 0.74 0.40 0.39 -4.5 -170.7 239.3 64.1

(a) Base
No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2904 41 1883 0.78 0.30 0.26 -8.5 -141.4 162.8 12.8
1 Best Fixed Fixed 2904 40 1767 0.79 0.30 0.29 -6.9 -138.5 159.7 14.3
2 Best - Fixed 2904 40 1407 0.76 0.28 0.32 -3.9 -114.9 156.7 37.9
3 Best Fixed - 2904 43 1684 0.77 0.47 0.47 -3.3 -106.3 157.2 47.6
4 Best - - 4543 66 2526 0.74 0.38 0.38 -4.2 -173.4 245.9 68.3

(b) Low Noise (10%)
No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2904 41 1883 0.78 0.30 0.26 -8.4 -131.7 163.8 23.7
1 Best Fixed Fixed 2904 40 1773 0.79 0.30 0.29 -7.0 -135.5 163.6 21.1
2 Best - Fixed 2904 40 1465 0.76 0.29 0.33 -4.2 -114.6 165.2 46.3
3 Best Fixed - 2904 42 1720 0.79 0.44 0.46 -3.2 -105.4 173.9 65.3
4 Best - - 3672 55 2276 0.73 0.44 0.42 -4.3 -136.5 205.7 65.0

(c) High Noise (25%)

Notes: These tables show the aggregate costs and benefits of the actual observed set of wind and
solar projects, as well as the same information for a range scenarios identifying the least cost set of
proposed projects. Each table refers to a different sensitivity. All values are the cumulative lifetime
totals for all wind and solar projects. The “Actual” row refers to the observed set of projects that
were actually built. The “Best” rows then refer to different scenarios for the optimal set of projects
subject to a series of constraints on the extent to which deployment can be reallocated. “Scenario
1” allows reallocation subject to the total output remaining unchanged by year and local authority.
“Scenario 2” allows reallocation subject to the total output remaining unchanged by local authority.
“Scenario 3” allows reallocation subject to the total output remaining unchanged by year. “Scenario
4” allows complete reallocation and so may lead to a different total output than was actually observed.
Information on project characteristics includes total output, capacity and number of projects, as well
as measures of the share of capacity in Scotland and the share of capacity that has any local property
costs.
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Table C.6: Misallocated Investment Sensitivity Analysis (Technology)

No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2904 41 1883 0.78 0.30 0.26 -8.5 -142.4 160.1 9.3
1 Best Fixed Fixed 2904 40 1731 0.79 0.29 0.29 -6.8 -136.9 159.2 15.4
2 Best - Fixed 2904 40 1375 0.76 0.28 0.32 -3.8 -114.7 153.7 35.2
3 Best Fixed - 2904 43 1593 0.76 0.46 0.47 -2.9 -107.4 157.2 46.8
4 Best - - 4509 66 2566 0.74 0.40 0.39 -4.5 -170.7 239.3 64.1

(a) Base
No. Scenario Constraints Project Characteristics Project Costs and Benefits

Wind/
Solar

Local
Au-
thority

Year Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed Fixed 2904 41 1883 0.78 0.30 0.26 -8.5 -142.4 160.1 9.3
1 Best Fixed Fixed Fixed 2904 40 1799 0.78 0.29 0.29 -7.0 -137.5 159.4 14.9
2 Best Fixed Fixed - 2904 39 1407 0.77 0.28 0.33 -5.1 -115.2 153.7 33.4
3 Best Fixed - Fixed 2904 41 1720 0.79 0.45 0.47 -2.9 -110.4 157.8 44.5
4 Best - - - 4509 66 2566 0.74 0.40 0.39 -4.5 -170.7 239.3 64.1

(b) Wind / Solar
No. Scenario Constraints Project Characteristics Project Costs and Benefits

Off/
On-
shore

Wind/
Solar

Local
Au-
thority

Year Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed Fixed Fixed 2904 41 1883 0.78 0.30 0.26 -8.5 -142.4 160.1 9.3
1 Best Fixed Fixed Fixed Fixed 2904 40 1738 0.78 0.29 0.27 -6.9 -140.6 159.6 12.0
2 Best Fixed Fixed Fixed - 2904 38 1237 0.77 0.27 0.27 -4.4 -121.0 153.0 27.6
3 Best Fixed Fixed - Fixed 2904 38 1293 0.77 0.27 0.25 -0.8 -133.1 158.9 25.0
4 Best - - - - 4509 66 2566 0.74 0.40 0.39 -4.5 -170.7 239.3 64.1

(c) Onshore Wind / Offshore Wind / Solar

Notes: These tables show the aggregate costs and benefits of the actual observed set of wind and
solar projects, as well as the same information for a range scenarios identifying the least cost set of
proposed projects. Each table refers to a different sensitivity. All values are the cumulative lifetime
totals for all wind and solar projects. The “Actual” row refers to the observed set of projects that
were actually built. The “Best” rows then refer to different scenarios for the optimal set of projects
subject to a series of constraints on the extent to which deployment can be reallocated. “Scenario
1” allows reallocation subject to the total output remaining unchanged by year and local authority.
“Scenario 2” allows reallocation subject to the total output remaining unchanged by local authority.
“Scenario 3” allows reallocation subject to the total output remaining unchanged by year. “Scenario
4” allows complete reallocation and so may lead to a different total output than was actually observed.
Information on project characteristics includes total output, capacity and number of projects, as well
as measures of the share of capacity in Scotland and the share of capacity that has any local property
costs.
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Table C.7: Misallocated Investment Sensitivity Analysis (Project Size)

No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2904 41 1883 0.78 0.30 0.26 -8.5 -142.4 160.1 9.3
1 Best Fixed Fixed 2904 40 1731 0.79 0.29 0.29 -6.8 -136.9 159.2 15.4
2 Best - Fixed 2904 40 1375 0.76 0.28 0.32 -3.8 -114.7 153.7 35.2
3 Best Fixed - 2904 43 1593 0.76 0.46 0.47 -2.9 -107.4 157.2 46.8
4 Best - - 4509 66 2566 0.74 0.40 0.39 -4.5 -170.7 239.3 64.1

(a) Base
No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2680 34 587 0.87 0.33 0.26 -3.2 -129.9 136.0 3.0
1 Best Fixed Fixed 2680 34 584 0.87 0.32 0.29 -3.0 -125.6 135.3 6.7
2 Best - Fixed 2680 34 547 0.84 0.31 0.32 -2.1 -106.2 130.9 22.5
3 Best Fixed - 2680 38 813 0.81 0.48 0.48 -2.3 -97.8 134.1 34.0
4 Best - - 3804 53 1094 0.79 0.44 0.43 -3.0 -136.8 186.6 46.7

(b) Projects > 10MW
No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2438 29 237 0.94 0.35 0.22 -0.9 -118.6 122.2 2.8
1 Best Fixed Fixed 2438 29 242 0.94 0.34 0.25 -1.0 -115.5 121.7 5.2
2 Best - Fixed 2438 28 250 0.92 0.33 0.30 -1.0 -99.0 118.1 18.1
3 Best Fixed - 2438 32 390 0.86 0.47 0.43 -1.2 -91.6 120.7 27.8
4 Best - - 3313 44 540 0.83 0.45 0.41 -1.7 -119.0 160.8 40.1

(c) Projects > 25MW

Notes: These tables show the aggregate costs and benefits of the actual observed set of wind and
solar projects, as well as the same information for a range scenarios identifying the least cost set of
proposed projects. Each table refers to a different sensitivity. All values are the cumulative lifetime
totals for all wind and solar projects. The “Actual” row refers to the observed set of projects that
were actually built. The “Best” rows then refer to different scenarios for the optimal set of projects
subject to a series of constraints on the extent to which deployment can be reallocated. “Scenario
1” allows reallocation subject to the total output remaining unchanged by year and local authority.
“Scenario 2” allows reallocation subject to the total output remaining unchanged by local authority.
“Scenario 3” allows reallocation subject to the total output remaining unchanged by year. “Scenario
4” allows complete reallocation and so may lead to a different total output than was actually observed.
Information on project characteristics includes total output, capacity and number of projects, as well
as measures of the share of capacity in Scotland and the share of capacity that has any local property
costs.
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Table C.8: Misallocated Investment Sensitivity Analysis (Spatial)

No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2904 41 1883 0.78 0.30 0.26 -8.5 -142.4 160.1 9.3
1 Best Fixed Fixed 2904 40 1731 0.79 0.29 0.29 -6.8 -136.9 159.2 15.4
2 Best - Fixed 2904 40 1375 0.76 0.28 0.32 -3.8 -114.7 153.7 35.2
3 Best Fixed - 2904 43 1593 0.76 0.46 0.47 -2.9 -107.4 157.2 46.8
4 Best - - 4509 66 2566 0.74 0.40 0.39 -4.5 -170.7 239.3 64.1

(a) Base
No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2904 41 1883 0.78 0.30 0.26 -8.5 -142.4 149.5 -1.4
1 Best Fixed Fixed 2904 40 1732 0.79 0.29 0.29 -6.8 -137.0 148.5 4.8
2 Best - Fixed 2904 40 1377 0.76 0.28 0.32 -3.8 -114.7 143.1 24.7
3 Best Fixed - 2904 43 1596 0.76 0.46 0.47 -2.9 -107.5 146.6 36.2
4 Best - - 4043 59 2309 0.73 0.41 0.41 -3.8 -147.5 200.2 48.9

(b) No Spatial Variation

Notes: These tables show the aggregate costs and benefits of the actual observed set of wind and
solar projects, as well as the same information for a range scenarios identifying the least cost set of
proposed projects. Each table refers to a different sensitivity. All values are the cumulative lifetime
totals for all wind and solar projects. The “Actual” row refers to the observed set of projects that
were actually built. The “Best” rows then refer to different scenarios for the optimal set of projects
subject to a series of constraints on the extent to which deployment can be reallocated. “Scenario
1” allows reallocation subject to the total output remaining unchanged by year and local authority.
“Scenario 2” allows reallocation subject to the total output remaining unchanged by local authority.
“Scenario 3” allows reallocation subject to the total output remaining unchanged by year. “Scenario
4” allows complete reallocation and so may lead to a different total output than was actually observed.
Information on project characteristics includes total output, capacity and number of projects, as well
as measures of the share of capacity in Scotland and the share of capacity that has any local property
costs.
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Table C.9: Misallocated Investment Sensitivity Analysis (Non-Marginal)

No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2904 41 1883 0.78 0.30 0.26 -8.5 -142.4 160.1 9.3
1 Best Fixed Fixed 2904 40 1731 0.79 0.29 0.29 -6.8 -136.9 159.2 15.4
2 Best - Fixed 2904 40 1375 0.76 0.28 0.32 -3.8 -114.7 153.7 35.2
3 Best Fixed - 2904 43 1593 0.76 0.46 0.47 -2.9 -107.4 157.2 46.8
4 Best - - 4509 66 2566 0.74 0.40 0.39 -4.5 -170.7 239.3 64.1

(a) Base
No. Scenario Constraints Project Characteristics Project Costs and Benefits

Year Local
Au-
thority

Output
(TWh)

Capacity
(GW)

Projects Wind
(%)

Scotland
(%)

Any
Property
Cost (%)

Cost
Property
(£bn)

Cost
Other
(£bn)

Benefits
(£bn)

Social
NPV
(£bn)

0 Actual Fixed Fixed 2904 41 1883 0.78 0.30 0.26 -8.5 -142.4 156.0 5.2
1 Best Fixed Fixed 2904 40 1732 0.79 0.29 0.29 -6.8 -137.0 155.1 11.3
2 Best - Fixed 2904 40 1373 0.76 0.28 0.32 -3.8 -114.7 149.5 31.1
3 Best Fixed - 2904 43 1594 0.76 0.46 0.47 -2.9 -107.4 153.1 42.7
4 Best - - 4218 62 2459 0.73 0.39 0.40 -4.2 -156.3 218.5 58.0

(b) Non-Marginal Adjustment

Notes: These tables show the aggregate costs and benefits of the actual observed set of wind and
solar projects, as well as the same information for a range scenarios identifying the least cost set of
proposed projects. Each table refers to a different sensitivity. All values are the cumulative lifetime
totals for all wind and solar projects. The “Actual” row refers to the observed set of projects that
were actually built. The “Best” rows then refer to different scenarios for the optimal set of projects
subject to a series of constraints on the extent to which deployment can be reallocated. “Scenario
1” allows reallocation subject to the total output remaining unchanged by year and local authority.
“Scenario 2” allows reallocation subject to the total output remaining unchanged by local authority.
“Scenario 3” allows reallocation subject to the total output remaining unchanged by year. “Scenario
4” allows complete reallocation and so may lead to a different total output than was actually observed.
Information on project characteristics includes total output, capacity and number of projects, as well
as measures of the share of capacity in Scotland and the share of capacity that has any local property
costs.
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D Transfer Payments to Local Residents

To study the feasibility of different local compensation schemes I look at a four transfer

schemes. These were illustrated in the main text and range from simple flat payments

based on distance, to payments that account for project size and are made proportional

to the average local authority property value.

In principle it is possible to more exactly match the payments made to the precise

local external costs calculated here. However, fully compensating those with the largest

negative impacts would require conditioning payments on individual property values and

this does not seem desirable from an administrative, political or equity standpoint.

The size of the payments made to different affected households is estimated using the

data on the property value impacts from each project at each post code location. I fit a

regression model with the aim of best approximating the heterogeneity in local property

value impacts using a parsimonious set of explanatory variables that could plausibly be

used to target payments. The estimation is weighted based on the number of properties

at each post code. The sample is restricted to paired observations for each post code

location, i, and project, j, where there are non-zero impacts, I, on nearby properties,

which effectively means any properties within 5km of a project in my sample.

The regression specifications I estimate for each transfer scheme are as follows:

Iij =
5∑

d=1

βdDi + ϵij (5)

Iij =
5∑

d=1

βdDi +
5∑

d=1

βC
d DiCj + ϵij (6)

Iij = (
5∑

d=1

βdDi +
5∑

d=1

βC
d DiCj)× Pa + ϵij (7)

Here I start by estimating a set of flat payments for each 1km distance bin, D. I then

add an interaction for project capacity, C, to provide both a flat fee and an additional per

MW payment. Finally, I interact the entire set of covariates with the average property

value, P , in the relevant local authority, a, to convert all payments from absolute amounts

to fractions of local authority property values. The results of these regressions can be

seen in Table D.1.

The total costs to developers can then be calculated by summing up the value of all

payments relevant to each project. I compare these to observed voluntary payments from

community benefits funds as listed in Scotland’s Community Benefits Register (Local

Energy Scotland, 2022). The latest government guidance for Scotland calls on developers
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to adopt funds with a value of £5,000/MW/year, and this increasingly appears to be

followed for the most recent projects (Scottish Government, 2019).

Table D.1: Local Compensation Scheme Regression Results

Model: (1) (2) (3)

Variables
£(0-1km) 7,702.98∗∗∗ 7,168.38∗∗∗

(384.42) (397.21)
£(1-2km) 5,832.67∗∗∗ 4,894.14∗∗∗

(203.16) (248.94)
£(2-3km) 4,971.62∗∗∗ 4,092.08∗∗∗

(143.43) (260.37)
£(3-4km) 3,533.31∗∗∗ 2,832.54∗∗∗

(98.19) (135.25)
£(4-5km) 1,881.32∗∗∗ 1,610.62∗∗∗

(50.92) (68.29)
£per MW (0-1km) 24.11∗∗

(11.61)
£per MW (1-2km) 97.40∗∗∗

(20.04)
£per MW (2-3km) 91.44∗∗∗

(24.77)
£per MW (3-4km) 67.06∗∗∗

(10.73)
£per MW (4-5km) 22.45∗∗∗

(4.66)
% of Avg LA Prop. Value (0-1km) 4.49∗∗∗

(0.23)
% of Avg LA Prop. Value (1-2km) 3.34∗∗∗

(0.13)
% of Avg LA Prop. Value (2-3km) 2.72∗∗∗

(0.12)
% of Avg LA Prop. Value (3-4km) 1.92∗∗∗

(0.10)
% of Avg LA Prop. Value (4-5km) 1.04∗∗∗

(0.04)
% of Avg LA Prop. Value per MW (0-1km) 0.03∗∗∗

(0.01)
% of Avg LA Prop. Value per MW (1-2km) 0.07∗∗∗

(0.01)
% of Avg LA Prop. Value per MW (2-3km) 0.07∗∗∗

(0.01)
% of Avg LA Prop. Value per MW (3-4km) 0.05∗∗∗

(0.01)
% of Avg LA Prop. Value per MW (4-5km) 0.02∗∗∗

(0.00)

Fit statistics
Observations 485,301 485,301 485,301
R2 0.21457 0.31663 0.52847
Adjusted R2 0.21457 0.31661 0.52846

Clustered (Project) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table shows the regression results for three different transfer schemes. The dependent
variable for these regressions is the impact per property. The unit of observation is a project-post
code pair. The regression is weighted according to the number of properties at each post code.

53



E Programming

All analysis was conducted using the R statistical programming language (R Core Team,

2022). The one exception was the visibility analysis which was conducted using QGIS

(QGIS Development Team, 2022).
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